Solution Problem 1

Eclipses of the Jupiter's Satellite

a. (Total Point : 1) Assume the orbits of the earth and Jupiter are circles, we can write the centripetal force $=$ equal gravitational attraction of the Sun.
$G \frac{M_{E} M_{s}}{R_{E}^{2}}=\frac{M_{E} V_{E}^{2}}{R_{E}}$
$G \frac{M_{J} M_{S}}{R_{J}^{2}}=\frac{M_{J} V_{J}^{2}}{R_{J}}$
where
G = universal gravitational constant
$\mathrm{M}_{\mathrm{S}}=$ mass of the Sun
$\mathrm{M}_{\mathrm{E}}=$ mass of the Earth
$M_{J}=$ mass of the Jupiter
$\mathrm{R}_{\mathrm{E}}=$ radius of the orbit of the Earth
$\mathrm{V}_{\mathrm{E}} \quad=$ velocity of the Earth
$\mathrm{V}_{\mathrm{J}} \quad=$ velocity of Jupiter

Hence
$\frac{R_{J}}{R_{E}}=\left(\frac{v_{E}}{v_{J}}\right)^{2}$
We know
$T_{E}=\frac{2 \pi}{\omega_{E}}=\frac{2 \pi R_{E}}{v_{E}}$, and
$T_{J}=\frac{2 \pi}{\omega_{J}}=\frac{2 \pi R_{J}}{v_{J}}$
we get

$$
\begin{aligned}
& \frac{T_{E}}{T_{J}}=\frac{\frac{R_{E}}{v_{E}}}{\frac{R_{J}}{v_{J}}}=\left(\frac{R_{E}}{R_{J}}\right)^{3 / 2} \\
& R_{J}=779.8 \times 10^{6} \mathrm{~km}
\end{aligned}
$$

b. (Total Point: 1) The relative angular velocity is

$$
\begin{aligned}
\omega & =\omega_{E}-\omega_{J}=2 \pi\left(\frac{1}{365}-\frac{1}{11.9 \times 365}\right) \\
& =0.0157 \mathrm{rad} / \mathrm{day}
\end{aligned}
$$

(0.5 point)
and the relative velocity is

$$
\begin{aligned}
v & =\omega R_{E}=2.36 \times 10^{6} \mathrm{~km} / \mathrm{day} \\
& =27.3 \times 10^{3} \mathrm{~km}
\end{aligned}
$$

c. (Total Point: 3) The distance of Jupiter to the Earth can be written as follows

$$
\begin{aligned}
\mathrm{d}(t) & =\mathrm{R}_{J}-\mathrm{R}_{E} \\
\mathrm{~d}(t) \cdot \mathrm{d}(t) & =\left(\mathrm{R}_{J}-\mathrm{R}_{E}\right) \cdot\left(\mathrm{R}_{J}-\mathrm{R}_{E}\right)
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{d}(t) & =\left(\mathrm{R}_{\mathrm{J}}^{2}+\mathrm{R}_{\mathrm{E}}^{2}-2 R_{E} R_{J} \cos \omega t\right)^{\frac{1}{2}} \\
& \approx R_{J}\left(1-2\left(\frac{R_{E}}{R_{J}}\right) \cos \omega t+\ldots\right)^{\frac{1}{2}} \\
& \approx R_{J}\left(1-\frac{R_{E}}{R_{J}} \cos \omega t+\ldots\right)
\end{aligned}
$$

Figure 1: Geometrical relationship to get $\Delta d(t)$

The relative error of the above expression is the order of

$$
\left(\frac{R_{E}}{R_{J}}\right)^{2} \approx 4 \%
$$

The observer saw M begin to emerge from the shadow when his position was at $d(t)$ and he saw the next emergence when his position was at $d(t+T 0)$ / Light need time to travel the distance $\Delta d=d\left(t+T_{0}\right)-d(t)$ so the observer will get apparent period T instead of the true period T_{o}.

$$
\begin{aligned}
\Delta d & =R_{E}\left(\cos \omega t-\cos \omega\left(t+T_{0}\right)\right) \\
& \approx R_{E} \omega T_{0} \sin \omega t
\end{aligned}
$$

because $\omega T_{0} \approx 0.03, \sin \omega t+\ldots, \cos \omega T_{0} \approx 1-\ldots$
We can also get this approximation directly from the geometrical relationship from Figure 1.
or we can use another method.

From the figure above we get

$$
\begin{aligned}
\beta & =(\phi+\alpha) \\
\frac{\omega T_{0}}{2}+\beta+\theta & =\frac{\pi}{2}
\end{aligned}
$$

$$
\begin{aligned}
\Delta d & \approx \omega T_{0} R_{E} \cos \alpha \\
& \approx \omega T_{0} R_{E} \sin \left(\omega t+\frac{\omega T_{0}}{2}+\phi\right) \\
\omega T_{0} & \approx 0.03 \text { and } \phi \approx 0.19
\end{aligned}
$$

d. (Total Point: 2)

$$
\begin{aligned}
T-T_{0} & \approx \frac{\Delta d(t)}{c} ; c=\text { velocity of light } \\
T & \approx T_{0}+\frac{\Delta d(t)}{c}=T_{0}+\frac{R_{E} \omega T_{0} \sin \omega t}{c}
\end{aligned}
$$

(1.0 point)
e. Total Point : 2 from

$$
T_{\max }=T_{0}+\frac{R_{E} \omega T_{0}}{c}
$$

we get

$$
\frac{R_{E} \omega T_{0}}{c}=15
$$

Hence

$$
\mathrm{C}=2.78 \times 10^{5} \mathrm{~km} / \mathrm{s}
$$

