Solution Problem 2

Detection of Alpha Particles

a. From the given range-energy relation and the data supplied we get

$$
\begin{equation*}
E=\left(\frac{R \alpha}{0.318}\right)^{\frac{2}{3}} \mathrm{MeV}=\left(\frac{5.50}{0.318}\right)^{\frac{2}{3}}=6.69 \mathrm{MeV} \tag{0.5point}
\end{equation*}
$$

since $W_{\text {ion-pair }}=35 \mathrm{eV}$, then

$$
N_{\text {ion- }- \text { air }}=\frac{6.69 \times 10^{6}}{35}=1.9 \times 10^{5}
$$

(0.5 point)

Size of voltage pulse:

$$
\begin{aligned}
& \Delta V=\frac{\Delta Q}{C}=\frac{N_{\text {air-pair }} e}{C} \\
& \text { with } C=45 p F=4.5 \times 10^{-11}
\end{aligned}
$$

Hence

$$
\Delta V=\frac{1.9 \times 10^{5} \times 1.6 \times 10^{-19}}{4.5 \times 10^{-11}} V=0.68 \mathrm{mV}
$$

b. Electrons from the ions-pairs produced by α particles from a radioactive sources of activity A (=number of α particles emitted by the sources per second) which enter the detector with detection efficiency 0.1 , will produce a collected current.

$$
\begin{align*}
I & =\frac{Q}{t}=0.1 \times A N_{\text {ion- }- \text { aur }} e \\
& =0.1 \times A \times 1.9 \times 10^{5} \times 1.6 \times 10^{-19} A \tag{1.0point}
\end{align*}
$$

With $\mathrm{I}_{\text {min }}=10^{-12} \mathrm{~A}$, the

$$
\begin{equation*}
A_{\min }=\frac{10^{-12} \operatorname{dis} s^{-1}}{1.6 \times 1.9 \times 10^{-15}}=330 \operatorname{dis} s^{-1} \tag{1.0point}
\end{equation*}
$$

Since $1 \mathrm{Ci}=3.7 \times 10^{10} \mathrm{dis} \mathrm{s}^{-1}$ then

$$
A_{\min }=\frac{330}{3.7 \times 10^{10}} \mathrm{Ci}=8.92 \times 10^{-9} \mathrm{Ci}
$$

(1.0 point)
c. With time constant

$$
\begin{gather*}
\tau=R C\left(\text { with } \mathrm{C}=45 \times 10^{-12} \mathrm{~F}\right)=10^{-3} s \\
R=\left(\frac{1000}{45}\right) M \Omega=22.22 M \Omega \tag{0.5point}
\end{gather*}
$$

For the voltage signal with height $\Delta \mathrm{V}=0.68 \mathrm{mV}$ generated at the anode of the ionization chamber by $6.69 \mathrm{MeV} \propto$ particles in problem (a), to achieve q $0.25 \mathrm{~V}=$ 250 mV voltage signal, the necessary gain of the voltage pulse amplifier should be

$$
\begin{equation*}
G=\frac{250}{0.68}=368 \tag{0.5point}
\end{equation*}
$$

d. By symmetry, the electric field is directed radially and depends only on distance the axis and can be deducted by using Gauss' theorem.

If we construct a Gaussian surface which is a cylinder of radius τ and length l, the charge contained within it is σl.

The surface integral

$$
\int E . d S=2 \pi r l E
$$

Figure 1: The Gaussian surface used to calculate the electric field E.
(1.0 point)

Since the field E is everywhere constant and normal to the curved surface. By Gauss's theorem :

$$
2 \pi r l E=\frac{\lambda l}{\varepsilon_{0}}
$$

so

$$
\mathrm{E}(r)=\frac{\lambda}{2 \pi \varepsilon_{0} r}
$$

Since E is radial and varies only with τ, then $E=-\frac{d V}{d r}$ and the potential V can be found by integrating $\mathrm{E}(\tau)$ with respect to τ, if we call the potential of inner wire V_{0}, we have

$$
V(r)-V_{0}=-\frac{\lambda}{2 \pi \varepsilon_{0}} \int_{\frac{d}{2}}^{\tau} \frac{d r}{r}
$$

Thus

$$
V(r)-V_{0}=-\frac{\lambda}{2 \pi \varepsilon_{0}} \ln \left(\frac{2 r}{d}\right)
$$

We can use this expression to evaluate the voltage between the capacitor's conductors by setting $r=\frac{D}{2}$, giving a potential difference of
$V=\frac{\lambda}{2 \pi \varepsilon_{0}} \ln \left(\frac{D}{d}\right)$
since the charge Q in the capacitor is σl, and the capacitance C is defined by $\mathrm{Q}=\mathrm{CV}$, the capacitance per unit length is
$\frac{2 \pi \varepsilon L_{0}}{\ln \frac{D}{d}}$
(1.0 point)

The maximum electric field occurs where r minimum, i.e. at $r=\frac{d}{2}$. if we set the field at $r=\frac{d}{2}$ equal to the breakdown field E_{b}, our expression for $\mathrm{E} ®$ shows that the charges per unit length σ in the capacitor must be $\mathrm{E}_{\mathrm{b}} \pi_{0} \mathrm{~d}$. Substituting for the potential difference V across the capacitor gives

$$
V=\frac{1}{2} E_{b} d \ln \left(\frac{D}{d}\right)
$$

Taking $\mathrm{E}_{\mathrm{b}}=3 \times 10^{6} \mathrm{~V}, \mathrm{~d}=1 \mathrm{~mm}$, and $\mathrm{D}=1 \mathrm{~cm}$, gives $\mathrm{V}=3.453 .45 \mathrm{kV}$.
(1.0 point).

