[Solution]

Theoretical Question 2

Motion of an Electric Dipole in a Magnetic Field

(1) Conservation Laws

(1a) $\quad \vec{r}_{C M}=\frac{1}{2}\left(\vec{r}_{1}+\vec{r}_{2}\right), \quad \vec{v}_{C M}=\frac{1}{2}\left(\vec{v}_{1}+\vec{v}_{2}\right), \quad \vec{\ell}=\vec{r}_{1}-\vec{r}_{2}, \quad \vec{u}=\dot{\vec{\ell}}=\vec{v}_{1}-\vec{v}_{2}$
Total force \vec{F} on the dipole is

$$
\begin{aligned}
\vec{F} & =\vec{F}_{1}+\vec{F}_{2}=q\left(\vec{E}+\vec{v}_{1} \times \vec{B}\right)+(-q)\left(\vec{E}+\vec{v}_{2} \times \vec{B}\right)=q\left(\vec{v}_{1}-\vec{v}_{2}\right) \times \vec{B} \\
& =q \dot{\vec{\ell}} \times \vec{B}
\end{aligned}
$$

so that

$$
\begin{equation*}
M \dot{\vec{v}}_{C M}=q \dot{\vec{\ell}} \times \vec{B} \quad(M=2 m) \tag{1}
\end{equation*}
$$

Computing the torque for rotation around the center of mass, we obtain

$$
\begin{align*}
I \dot{\vec{\omega}} & =\left(\frac{\vec{\ell}}{2}\right) \times\left(q \vec{v}_{1} \times \vec{B}\right)+\left(\frac{-\vec{\ell}}{2}\right) \times\left(-q \vec{v}_{2} \times \vec{B}\right) \tag{2}\\
& =q \vec{\ell} \times\left(\vec{v}_{C M} \times \vec{B}\right)
\end{align*}
$$

where

$$
\begin{equation*}
I=\frac{1}{2} m \ell^{2} \tag{3}
\end{equation*}
$$

(1b) From eq.(1), we obtain the conservation law for the momentum:

$$
\begin{equation*}
\dot{\vec{P}}=0, \quad \vec{P}=M \vec{v}_{C M}-q \vec{\ell} \times \vec{B} \tag{4}
\end{equation*}
$$

From eq.(1) and eq.(2), one obtains the conservation law for the energy.

$$
\begin{equation*}
\dot{E}=0, \quad E=\frac{1}{2} M v_{C M}^{2}+\frac{1}{2} I \omega^{2} \tag{5}
\end{equation*}
$$

(1c) Using eq.(4) and eq.(2),

$$
\begin{aligned}
\frac{d}{d t}\left(\vec{r}_{C M} \times \vec{P}\right) \cdot \hat{B} & =\left(\vec{v}_{C M} \times \vec{P}\right) \cdot \hat{B}=-q \vec{v}_{C M} \times(\vec{\ell} \times \vec{B}) \cdot \hat{B} \\
& =q(\vec{\ell} \times \vec{B}) \times \vec{v}_{C M} \cdot \hat{B}=q(\vec{\ell} \times \vec{B}) \cdot\left(\vec{v}_{C M} \times \hat{B}\right) \\
& =q \vec{\ell} \cdot\left(\vec{B} \times\left(\vec{v}_{C M} \times \hat{B}\right)\right)=-q \vec{\ell} \cdot\left(\left(\vec{v}_{C M} \times \vec{B}\right) \times \hat{B}\right) \\
& =-q \vec{\ell} \times\left(\vec{v}_{C M} \times \vec{B}\right) \cdot \hat{B} \\
& =-I \dot{\vec{\omega}} \cdot \hat{B}
\end{aligned}
$$

[Solution] (continued) Theoretical Question 2
Motion of an Electric Dipole in a Magnetic Field
we obtain the conservation law

$$
\begin{equation*}
\dot{J}=0 \quad J=\left(\vec{r}_{C M} \times \vec{P}+I \vec{\omega}\right) \cdot \hat{B} \tag{6}
\end{equation*}
$$

for the component of the angular momentum along the direction of \vec{B}.

(2) Motion in a Plane Perpendicular to \vec{B}

(2a) Write

$$
\begin{equation*}
\vec{\ell}=\ell\{\cos \varphi(t) \hat{x}+\sin \varphi(t) \hat{y}\}, \quad \varphi(0)=0, \quad \dot{\varphi}(0)=\omega_{0} \tag{7}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\vec{\omega}=\dot{\varphi} \hat{z} \tag{8}
\end{equation*}
$$

From eq.(4), we have

$$
\begin{equation*}
M \vec{v}_{C M}=\vec{P}+q \ell B(\sin \varphi \hat{x}-\cos \varphi \hat{y}) \tag{9}
\end{equation*}
$$

At $t=0$, we have $v_{C M}=0, \quad \varphi=0$ so that

$$
\begin{equation*}
\vec{P}=q \ell B \hat{y} \tag{10}
\end{equation*}
$$

Hence from eqs.(9) and (10) we have

$$
\begin{equation*}
\dot{x}_{C M}=\left(\frac{q \ell B}{M}\right) \sin \varphi, \quad \dot{y}_{C M}=\left(\frac{q \ell B}{M}\right)(1-\cos \varphi) \tag{11}
\end{equation*}
$$

From conservation of energy, i.e. Eq.(5), we have

$$
\begin{align*}
& \frac{1}{2} I \dot{\varphi}^{2}+\frac{(q \ell B)^{2}}{M}(1-\cos \varphi)=\frac{1}{2} I \omega_{0}^{2} \\
\therefore \quad & \dot{\varphi}^{2}+\frac{1}{2} \omega_{c}^{2}(1-\cos \varphi)=\omega_{0}^{2} \tag{12}
\end{align*}
$$

where

$$
\begin{equation*}
\omega_{c}^{2}=\frac{4(q \ell B)^{2}}{M I}=\left(\frac{2 q B}{m}\right)^{2} \tag{13}
\end{equation*}
$$

In order to make a full turn, $\dot{\varphi}$ can not become zero so that
[Solution] (continued) Theoretical Question 2

Motion of an Electric Dipole in a Magnetic Field

$$
\begin{equation*}
\omega_{0}^{2}>\omega_{c}^{2} \Rightarrow\left|\omega_{0}\right|>\omega_{c}=\frac{2 q B}{m} \tag{14}
\end{equation*}
$$

(2b) From Eq.(6), we have

$$
\begin{equation*}
x_{C M} P+I \omega=J \tag{15}
\end{equation*}
$$

where P is the magnitude of \vec{P}.
At $t=0$, we have $J=I \omega_{0}$ so that

$$
\begin{equation*}
x_{C M} P+I \omega=I \omega_{0} \tag{16}
\end{equation*}
$$

From eq.(12), one can see that $\omega_{0}^{2} \geq \omega^{2}$ so that $x_{C M} \geq 0$. Thus $x_{C M}$ reaches a maximum d_{m} when ω takes its minimum value.

When $\omega_{0}<\omega_{c}$, the minimum value of ω is $-\omega_{0}$ so that

$$
\begin{equation*}
d_{m}=\frac{2 I}{P} \omega_{0}=\left(\frac{m \omega_{0}}{q B}\right) \ell, \quad \omega_{0}<\omega_{c} \tag{17}
\end{equation*}
$$

When $\omega_{0}>\omega_{c}$, the minimum value of ω is $\sqrt{\omega_{0}^{2}-\omega_{c}^{2}}$ so that

$$
\begin{equation*}
d_{m}=\left(\frac{I}{P}\right)\left(\omega_{0}-\sqrt{\omega_{0}^{2}-\omega_{c}^{2}}\right)=\frac{m}{2 q B}\left(\omega_{0}-\sqrt{\omega_{0}^{2}-\omega_{c}^{2}}\right) \ell, \quad \omega_{0}>\omega_{c} \tag{18}
\end{equation*}
$$

When $\omega_{0}=\omega_{c}, \omega^{2}=\frac{1}{2} \omega_{c}^{2}(1+\cos \varphi)=\omega_{c}^{2} \cos ^{2} \frac{\phi}{2}$

$$
\therefore \quad \dot{\varphi}=\omega_{c} \cos \frac{\phi}{2}
$$

When φ is close to π, let $\varphi=\pi-2 \varepsilon$ then

$$
\begin{aligned}
& \dot{\varepsilon}=-\frac{1}{2} \omega_{c} \sin \varepsilon \approx-\frac{1}{2} \omega_{c} \varepsilon \\
\therefore \quad & \varepsilon \sim e^{-\omega_{c} t / 2}
\end{aligned}
$$

so that it will take $t \rightarrow \infty$ for $\varepsilon \rightarrow 0$, i.e. for φ to reach π. Hence

$$
\begin{equation*}
d_{m}=\left(\frac{I}{P}\right) \omega_{c}=\left(\frac{m \omega_{c}}{2 q B}\right) \ell, \omega_{0}=\omega_{c} \tag{19}
\end{equation*}
$$

(2c) Tension on the rod comes from three sources:
[Solution] (continued) Theoretical Question 2

Motion of an Electric Dipole in a Magnetic Field

(i) Coulomb force $=\frac{1}{4 \pi \varepsilon_{0}} \frac{q^{2}}{\ell^{2}}$

Positive value means compression on the rod.
(ii) Centrifugal force due to rotation of the $\operatorname{rod}=-\frac{1}{2} m \omega^{2} \ell$
(iii) Magnetic force on the particles due to the motion of the center of the mass

$$
=q \vec{v}_{C M} \times \vec{B} \cdot(-\hat{\ell})=q \vec{v}_{C M} \cdot \hat{\ell} \times \vec{B}
$$

Taking the square of both sides of eq.(4) and using the initial condition for the value of P^{2}, we obtain

$$
\begin{equation*}
\frac{1}{2} M v_{C M}^{2}=q \ell \vec{v}_{C M} \cdot \hat{\ell} \times \vec{B}=\frac{1}{2} I\left(\omega_{0}^{2}-\omega^{2}\right) \tag{22}
\end{equation*}
$$

Combining the three forces, we have

$$
\begin{equation*}
\text { tension on the } \operatorname{rod}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q^{2}}{\ell^{2}}-\frac{1}{2} m \ell \omega^{2}+\frac{1}{4} m \ell\left(\omega_{0}^{2}-\omega^{2}\right) \tag{23}
\end{equation*}
$$

A positive value means compression on the rod.

