[Solution]

Theoretical Question 3

Thermal Vibration of Surface Atoms

(1) (a) The wavelength of the incident electron is

$$
\begin{aligned}
& \lambda=\frac{h}{p}=\frac{h}{\sqrt{2 m e V}} \\
& =\frac{6.63 \times 10^{-34}}{\sqrt{2 \times 9.11 \times 10^{-31} \times 1.60 \times 10^{-19} \times 64.0}} \\
& =1.53 \times 10^{-10} \mathrm{~m}=1.53 \AA
\end{aligned}
$$

(b) Consider the interference between the atomic rows on the surface as shown in Fig. 3c.

The path difference between electron beam 1 and 2 is

$$
\Delta \ell=b\left(\sin \phi-\sin \phi_{o}\right)=n \lambda
$$

Given $\phi_{o}=15.0^{\circ}, \lambda=1.53 \AA$ and $b=\frac{a}{\sqrt{2}}=\frac{3.92}{\sqrt{2}}=2.77 \AA$, two solutions are possible.
(i) When $n=0, \phi=\phi_{\mathrm{o}}=15.0^{\circ}$
(ii) When $n=1$

$$
\begin{gathered}
\Delta \ell=2.77\left(\sin \phi-\sin 15^{\circ}\right)=1 \times 1.53 \\
\sin \phi=\frac{1.53+0.72}{2.77}=0.812
\end{gathered}
$$

[Solution] (continued) Theoretical Question 3

Vibration of Surface Atoms

$$
\begin{equation*}
\phi=54.3^{\circ} \tag{Answer2}
\end{equation*}
$$

For $n=2$, no solution exists as $\Delta \ell=2.77\left(\sin \phi-\sin 15^{\circ}\right)=2 \times 1.53$ and $\sin \phi>1$.
(2) $I=I_{0} \exp \left\langle-(\vec{u} \cdot \Delta \vec{K})^{2}\right\rangle$

Fig. 3d

For the specularly reflected beam, we have from Fig. 3d

$$
\Delta \vec{K}=\vec{K}^{\prime}-\vec{K}=2 K \cos \theta \quad \hat{x}
$$

where \hat{x} is the unit vector in the direction of the surface normal. Take the x-component of \vec{u}, we then obtain

$$
\begin{equation*}
I=I_{0} e^{-\left\langle u_{x}^{2}(t) \cdot 4 K^{2} \cos ^{2} \theta>\right.}=I_{0} e^{-4 K^{2} \cos ^{2} \theta\left\langle u_{x}^{2}(t)\right\rangle} \tag{2}
\end{equation*}
$$

The vibration in the direction of the surface normal of the surface atoms is simple harmonic, take

$$
u_{x}(t)=A \cos \omega t
$$

Q

$$
\begin{gathered}
\left\langle u_{x}^{2}(t)\right\rangle=\frac{1}{\tau} \int_{0}^{\tau} u^{2} d t=\frac{1}{\tau} \int_{0}^{\tau} A^{2} \cos ^{2} \omega t d t=\frac{A^{2}}{\tau} \cdot \frac{\tau}{2}=\frac{A^{2}}{2} \\
\therefore A^{2}=2\left\langle u_{x}^{2}(t)\right\rangle
\end{gathered}
$$

The total energy E is thus given by

$$
E=\frac{1}{2} C A^{2}=\frac{1}{2} C \cdot 2\left\langle u_{x}^{2}(t)\right\rangle=C\left\langle u_{x}^{2}(t)\right\rangle=m^{\prime} \omega^{2}\left\langle u_{x}^{2}(t)\right\rangle
$$

[Solution] (continued) Theoretical Question 3

Vibration of Surface Atoms

Therefore, one obtains

$$
\begin{aligned}
& <u_{x}^{2}(t)>=E /\left(m^{\prime} \omega^{2}\right) \\
& E=m^{\prime} \omega^{2}<u_{x}^{2}>=k_{B} T
\end{aligned}
$$

where m^{\prime} is the mass of the atom. From either of the above two equations, one then has the following equality

$$
\begin{equation*}
\left\langle u_{x}^{2}\right\rangle=\frac{k_{B} T}{m^{\prime} \omega^{2}}=\frac{k_{B} T}{m^{\prime} 4 \pi^{2} f^{2}} \tag{3}
\end{equation*}
$$

From eq. (3) and eq. (2), one obtains

$$
I=I_{0} e^{-4 K^{2} \cos ^{2} \theta \frac{k_{B} T}{m^{\prime} 4 \pi^{2} f^{2}}}
$$

where $K=\frac{2 \pi p}{h}=\frac{2 \pi}{\lambda}$. Accordingly,

$$
\begin{equation*}
I=I_{0} e^{-\frac{4 k_{B} \cos ^{2} \theta}{m^{\prime} f^{2} \lambda^{2} T}}=I_{0} e^{-M^{\prime} T} \tag{4}
\end{equation*}
$$

and

$$
\ln \frac{I}{I_{0}}=-M^{\prime} T
$$

From the plot of $\ln \frac{I}{I_{0}}$ versus T, one obtains the slope

$$
\begin{equation*}
M^{\prime}=\frac{4 k_{B} \cos ^{2} \theta}{m^{\prime} f^{2} \lambda^{2}} \tag{5}
\end{equation*}
$$

The slope of the curve can be estimated from Fig. 3b and leads to the result

$$
M^{\prime}=2.3 \times 10^{-3}
$$

Using the following data in Eq.(5),

$$
\begin{gathered}
k_{B}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K} \\
\lambda=1.53 \times 10^{-10} \mathrm{~m} \\
m^{\prime}=195.1 \times 10^{-3} /\left(6.02 \times 10^{23}\right)=3.24 \times 10^{-25} \mathrm{~kg} / \text { atom }
\end{gathered}
$$

[Solution] (continued) Theoretical Question 3

Vibration of Surface Atoms

one finds

$$
2.3 \times 10^{-3}=\frac{4 \times 1.38 \times 10^{-23} \cdot \cos ^{2} 15^{\circ}}{\frac{195.1 \times 10^{-3}}{6.02 \times 10^{23}} \times f^{2} \times\left(1.53 \times 10^{-10}\right)^{2}}
$$

The solution for frequency is then

$$
f^{2}=3.0 \times 10^{24} \text { (new) } \Rightarrow \quad f=1.7 \times 10^{12} \mathrm{~Hz} \quad \text { Answer (a) }
$$

From $\left\langle u_{x}^{2}\right\rangle=\frac{k_{B} T}{m^{\prime} 4 \pi^{2} f^{2}}, \quad T=300 K, \quad$ one finally obtains

$$
\left\langle u_{x}^{2}>=\frac{1.38 \times 10^{-23} \cdot 300}{\frac{195.1 \times 10^{-3}}{6.02 \times 10^{23}} \times 4 \pi^{2} \times 3.0 \times 10^{24}}=1.1 \times 10^{-22} \mathrm{~m}^{2}(\text { new })\right.
$$

and

$$
\sqrt{\left\langle u_{x}^{2}\right\rangle}=1.0 \times 10^{-11} \mathrm{~m}=0.10 \AA \text { (new) }
$$

Ans

