Theoretical Question 1 (vibrations of a linear crystal lattice)

A very large number N of movable identical point particles ($N \gg 1$), each with mass m, are set in a straight chain with $N+1$ identical massless springs, each with stiffness (spring constant) S, linking them to each other and the ends attached to two additional immovable particles. See figure. This chain will serve as a model of the vibration modes of a onedimensional crystal. When the chain is set in motion, the longitudinal vibrations of the chain can be looked upon as a superposition of simple oscillations (called modes) each with its own characteristic mode frequency.

(a) Write down the equation of motion of the $n^{\text {th }}$ particle.
[0.7 marks]
(b) To attempt to solve the equation of motion of part (a) use the trial solution

$$
X_{n}(\omega)=A \sin n k a \cos (\omega t+\alpha),
$$

where $X_{n}(\omega)$ is the displacement of the $n^{\text {th }}$ particle from equilibrium, ω the angular frequency of the vibration mode and A, k and α are constants; k and ω are the wave numbers and mode frequencies respectively. For each k, there will be a corresponding frequency ω. Find the dependence of ω on k, the allowed values of k, and the maximum value of ω. The chain's vibration is thus a superposition of all these vibration modes. Useful formulas:
$(\mathrm{d} / \mathrm{d} x) \cos \alpha x=-\alpha \sin \alpha x$,
$(\mathrm{d} / \mathrm{d} x) \sin \alpha x=\alpha \cos \alpha x, \alpha=$ constant.

$$
\sin (A+B)=\sin A \cos B+\cos A \sin B, \quad \cos (A+B)=\cos A \cos B-\sin A \sin B
$$

According to Planck the energy of a photon with a frequency of ω is $\hbar \omega$, where \hbar is the Planck constant divided by 2π. Einstein made a leap from this by assuming that a given crystal vibration mode with frequency ω also has this energy. Note that a vibration mode is not a particle, but a simple oscillation configuration of the entire chain. This vibration mode is analogous to the photon and is called a phonon. We will follow up the consequences of this idea in the rest of the problem. Suppose a crystal is made up of a very large $\left(\sim 10^{23}\right)$ number of particles in a straight chain.
(c) For a given allowed ω (or k) there may be no phonons; or there may be one; or two; or any number of phonons. Hence it makes sense to try to calculate the average energy $\langle E(\omega)\rangle$ of a particular mode with a frequency ω. Let $P_{p}(\omega)$ represent the probability that there are p phonons with this frequency ω. Then the required average is

$$
\langle E(\omega)\rangle=\frac{\sum_{p=0}^{\infty} p \hbar \omega P_{p}(\omega)}{\sum_{p=0}^{\infty} P_{p}(\omega)}
$$

Although the phonons are discrete, the fact that there are so many of them (and the P_{p} becomes tiny for large p) allows us to extend the sum to $p=\infty$, with negligible error. Now the probability P_{p} is given by Boltzmann's formula

$$
P_{p}(\omega) \propto \exp \left(-p \hbar \omega / k_{\mathrm{B}} T\right),
$$

where k_{B} is Boltzmann's constant and T is the absolute temperature of the crystal, assumed constant. The constant of proportionality does not depend on p. Calculate the average energy for phonons of frequency ω. Possibly useful formula: $(\mathrm{d} / \mathrm{d} x) e^{f(x)}=(\mathrm{d} f / \mathrm{d} x) e^{f(x)}$. [2 marks]
(d) We would like next to compute the total energy E_{T} of the crystal. In part (c) we found the average energy $\langle E(\omega)\rangle$ for the vibration mode ω. To find E_{T} we must multiply $\langle E(\omega)\rangle$ by the number of modes of the crystal per unit of frequency ω and then sum up all these for the entire range from $\omega=0$ to $\omega_{\text {max }}$. Take an interval Δk in the range of wave numbers. For very large N and for Δk much larger than the spacing between successive (allowed) k values, how many modes can be found in the interval Δk ?
[1 mark]
(e) To make use of the results of (a) and (b), approximate Δk by $(d k / d \omega) d \omega$ and replace any sum by an integral over ω. (It is more convenient to use the variable ω in place of k at this point.) State the total number of modes of the crystal in this approximation. Also derive an expression E_{T} but do not evaluate it. The following integral may be useful: $\int_{0}^{1} d x / \sqrt{1-x^{2}}=\pi / 2$.
[2.2 marks]
(f) The molar heat capacity C_{V} of a crystal at constant volume is experimentally accessible: $C_{V}=\mathrm{d} E_{\mathrm{T}} / \mathrm{d} T$ ($T=$ absolute temperature). For the crystal under discussion determine the dependence of C_{V} on T for very large and very low temperatures (i.e., is it constant, linear or power dependent for an interval of the temperature?). Sketch a qualitative graph of C_{V} versus T, indicating the trends predicted for very low and very high T.
[1.9 marks]

