•

(a) $m\ddot{X}_n = S(X_{n+1} - X_n) - S(X_n - X_{n-1}).$	0.7
(b) Let $X_n = A \sin nka \cos (\omega t + \alpha)$, which has a harmonic time dependence.	
By analogy with the spring, the acceleration is $\ddot{X}_n = -\omega^2 X_n$.	
Substitute into (a): $-mA\omega^2 \sin nka = AS \{\sin (n+1)ka - 2 \sin nka + \sin (n-1)ka\}$	
$= -4SA \sin nka \sin^2 ka.$	0.6
Hence $\omega^2 = (4S/m) \sin^2 ka$.	0.2
To determine the allowed values of k, use the boundary condition $sin (N+1) ka = sin kL = 0$.	0.7
The allowed wave numbers are given by $kL = \pi, 2\pi, 3\pi,, N\pi$ (<i>N</i> in all),	0.3
and their corresponding frequencies can be computed from $\omega = \omega_0 \sin ka$,	
in which $\omega_{\text{max}} = \omega_0 = 2(S/m)$ - is the maximum allowed frequency.	0.4
(c) $\langle E(\omega) \rangle = \frac{\sum_{p=0}^{\infty} p \hbar \omega P_p(\omega)}{\sum_{p=0}^{\infty} P_p(\omega)}$	
First method: $\frac{\sum_{n=0}^{\infty} n\hbar \omega e^{-n\hbar \omega/k_B T}}{\sum_{n=0}^{\infty} e^{-n\hbar \omega/k_B T}} = k_B T^2 \frac{\partial}{\partial T} \ln \sum_{n=0}^{\infty} e^{-n\hbar \omega/k_B T}$	1.5
The sum is a geometric series and is $\{1 - e^{-\hbar\omega/k_BT}\}^{-1}$	0.5
We find $\langle E(\omega) \rangle = \frac{\hbar \omega}{e^{\hbar \omega / k_B T} - 1}$.	
Alternatively: denominator is a geometric series = $\{1 - e^{-\hbar\omega/k_BT}\}^{-1}$	(0.5)
Numerator is $k_T^2(d/dT)$ (denominator) = $-\hbar\omega/k_T (1\hbar\omega/k_T)^{-2}$ and result follows	(1.5)

A non-calculus method: Let $D = 1 + e^{-x} + e^{-2x} + e^{-3x} +$, where $x = \hbar \omega / k_{\rm B} T$. This is a geometric series and equals $D = 1/(1 - e^{-x})$. Let $N = e^{-x} + 2e^{-2x} + 3e^{-3x} +$ The result we want is N/D . Observe $D - 1 = e^{-x} + e^{-2x} + e^{-3x} + e^{-4x} + e^{-5x} +$ $(D - 1)e^{-x} = e^{-2x} + e^{-3x} + e^{-4x} + e^{-5x} +$ $(D - 1)e^{-2x} = e^{-2x} + e^{-3x} + e^{-4x} + e^{-5x} +$ Hence $N = (D - 1)D$ or $N/D = D - 1 = \frac{e^{-x}}{1 - e^{-x}} = \frac{1}{e^{x} - 1}$.	(2.0)
(d) From part (b) the allowed k values are $\pi/L 2\pi/L = N\pi/L$	
(d) From part (b), the anowed k values are <i>n/L</i> , <i>2n/L</i> , <i>, Nn/L</i> .	
Hence the spacing between allowed k values is π/L , so there are $(L/\pi)\Delta k$ allowed modes in the	1.0
wave-number interval Δk (assuming $\Delta k \gg \pi/L$).	
(e) Since the allowed k are $\pi/L,, N\pi/L$, there are N modes.	0.5
Follow the problem:	0.5
$d\omega/dk = \underline{a\omega_0} \cos \underline{ka}$ from part (a) & (b)	0.5
$=\frac{1}{2}a\sqrt{\omega_{\text{max}}^2-\omega^2}$, $\omega_{\text{max}}=\omega_0$. This second form is more convenient for integration.	
The number of modes dn in the interval $d\omega$ is	
$dn = (L/\pi)\Delta k = (L/\pi) (dk/d\omega) d\omega$	0.5 for eitl
$= (L/\pi) \{ a\omega_0 \cos ka \}^{-1} d\omega$	
$= \frac{L}{\pi} \frac{2}{a} \frac{1}{\sqrt{\omega_{\max}^2 - \omega^2}} d\omega$	This part is necessary for E_T below,
$= \frac{2(N+1)}{\pi} \frac{1}{\sqrt{\omega_{\max}^2 - \omega^2}} d\omega$	but not for number of modes
Total number of modes = $\int dn = \int_{0}^{\omega_{\text{max}}} \frac{2(N+1)}{\pi} \frac{d\omega}{\sqrt{\omega_{\text{max}}^2 - \omega^2}} = N + 1 \approx N$ for large N.	(0.5)
Total crystal energy from (c) and dn of part (e) is given by $E_T = \frac{2N}{\pi} \int_{0}^{\omega_{\text{max}}} \frac{\hbar\omega}{e^{\hbar\omega/k_BT} - 1} \frac{d\omega}{\sqrt{\omega_{\text{max}}^2 - \omega^2}}.$	0.7

(f) Observe first from the last formula that E_T increases monotonically with temperature since

 $\{e^{\hbar\omega/kT} - 1\}^{-1}$ is increasing with *T*.

When $T \rightarrow 0$, the term – 1 in the last result may be neglected in the denominator so

$$=\frac{2N}{\hbar\pi\omega_{\max}}(k_BT)^2\int_{0}^{\infty}\frac{xe^{-x}}{\sqrt{1-(k_BTx/\hbar\omega_{\max})^2}}dx$$
 0.2

which is quadratic in T (denominator in integral is effectively unity) hence C_V is linear in T 0.2 near absolute zero.

Alternatively, if the summation is retained, we have

$$E_{T} = \frac{2N}{\pi} \sum_{\omega} \frac{\hbar\omega}{e^{\hbar\omega/k_{B}T} - 1} \frac{\Delta\omega}{\sqrt{\omega_{\max}^{2} - \omega^{2}}} \rightarrow_{T \to 0} \frac{2N}{\pi} \sum_{\omega} \hbar\omega e^{-\hbar\omega/k_{B}T} \frac{\Delta\omega}{\sqrt{\omega_{\max}^{2} - \omega^{2}}} = \frac{2N}{\pi} \frac{(k_{B}T)^{2}}{\hbar\omega} \sum_{y} e^{-y} y \Delta y$$

$$(0.5)$$

When $T \rightarrow \infty$, use $e^x \approx 1 + x$ in the denominator,

$$E_T \approx {}_{T \to \infty} \frac{2N}{\pi} \int_{0}^{\omega_{\text{max}}} \frac{\hbar\omega}{\hbar\omega/k_B T} \frac{1}{\sqrt{\omega_{\text{max}}^2 - \omega^2}} d\omega = \frac{2N}{\pi} k_B T \frac{\pi}{2}, \qquad 0.1$$

which is linear; hence $C_V \rightarrow Nk_B = R$, the universal gas constant. This is the Dulong-Petit rule. Alternatively, if the summation is retained, write denominator as $e^{\hbar\omega/k_BT} - 1 \approx \hbar\omega/k_BT$ and (0.2)2N۸m

$$E_T \rightarrow_{T \rightarrow \infty} \frac{2IV}{\pi} k_B T \sum_{\omega} \frac{2I\omega}{\sqrt{\omega_{\max}^2 - \omega^2}}$$
 which is linear in *T*, so C_V is constant

Sketch of C_V versus T:

0.2

0.2

0.5

0.2

Answer sheet: Question 1

(a) Equation of motion of the n^{th} mass is:

$$m\ddot{X}_{n} = S(X_{n+1} - X_{n}) - S(X_{n} - X_{n-1}).$$

(b) Angular frequencies ω of the chain's vibration modes are given by the equation:

$$\omega^2 = (4S/m)\sin^2 ka.$$

Maximum value of ω is: $\omega_{\text{max}} = \omega_0 = 2(S/m)^-$

The allowed values of the wave number k are given by:

$$\pi/L$$
, $2\pi/L$, ..., $N\pi/L$.

How many such values of k are there? N

(f) The average energy per frequency mode ω of the crystal is given by:

$$\langle E(\omega) \rangle = \frac{\hbar \omega}{e^{\hbar \omega / k_B T} - 1}$$

(g) There are how many allowed modes in a wave number interval Δk ?

 $(L/\pi)\Delta k$.

(e) The total number of modes in the lattice is: N

Total energy $E_{\rm T}$ of crystal is given by the formula:

$$E_T = \frac{2N}{\pi} \int_{0}^{\omega_{\max}} \frac{\hbar\omega}{e^{\hbar\omega/k_BT} - 1} \frac{d\omega}{\sqrt{\omega_{\max}^2 - \omega^2}}.$$

(h) A sketch (graph) of C_V versus absolute temperature T is shown below.

For $T \ll 1$, C_V displays the following behaviour: C_V is linear in T.

As $T \to \infty$, C_V displays the following behaviour: $C_V \to Nk_B = R$, the universal gas constant.