Solution 1

(a) $m \ddot{X}_{n}=S\left(X_{n+1}-X_{n}\right)-S\left(X_{n}-X_{n-1}\right)$.	0.7
(b) Let $X_{n}=A \sin n k a \cos (\omega t+\alpha)$, which has a harmonic time dependence. By analogy with the spring, the acceleration is $\ddot{X}_{n}=-\omega^{2} X_{n}$.	
Substitute into (a): $\quad-m A \omega^{2} \sin n k a=A S\{\sin (n+1) k a-2 \sin n k a+\sin (n-1) k a\}$	
$=-4 S A \sin n k a \sin ^{2} _k a$.	0.6
Hence $\omega^{2}=(4 S / m) \sin ^{2} _k a$.	0.2
To determine the allowed values of k, use the boundary condition $\sin (N+1) k a=\sin k L=0$.	0.7
The allowed wave numbers are given by $k L=\pi, 2 \pi, 3 \pi, \ldots, N \pi$ (N in all),	0.3
and their corresponding frequencies can be computed from $\omega=\omega_{0} \sin _k a$,	
in which $\omega_{\max }=\omega_{0}=2(S / m)$ - is the maximum allowed frequency.	0.4
(c) $\langle E(\omega)\rangle=\frac{\sum_{p=0}^{\infty} p \hbar \omega P_{p}(\omega)}{\sum_{p=0}^{\infty} P_{p}(\omega)}$	
First method: $\frac{\sum_{n=0}^{\infty} n \hbar \omega e^{-n \hbar \omega / k_{B} T}}{\sum_{n=0}^{\infty} e^{-n \hbar \omega / k_{B} T}}=k_{B} T^{2} \frac{\partial}{\partial T} \ln \sum_{n=0}^{\infty} e^{-n \hbar \omega / k_{B} T}$	1.5
The sum is a geometric series and is $\left\{1-e^{-\hbar \omega / k_{B} T}\right\}^{-1}$	0.5
We find $\langle E(\omega)\rangle=\frac{\hbar \omega}{e^{\hbar \omega / k_{B} T}-1}$.	
Alternatively: denominator is a geometric series $=\left\{1-e^{-\hbar \omega / k_{B} T}\right\}^{-1}$	(0.5)
Numerator is $k_{B} T^{2}(\mathrm{~d} / \mathrm{dT})$ (denominator) $=e^{-\hbar \omega / k_{B} T}\left\{1-e^{-\hbar \omega / k_{B} T}\right\}^{-2}$ and result follows.	(1.5)

A non-calculus method:

Let $D=1+e^{-x}+e^{-2 x}+e^{-3 x}+\ldots$, where $x=\hbar \omega / k_{\mathrm{B}} T$. This is a geometric series and equals $D=$ $1 /\left(1-e^{-x}\right)$. Let $N=e^{-x}+2 e^{-2 x}+3 e^{-3 x}+\ldots$. The result we want is N / D. Observe

$$
\begin{array}{rlrl}
D-1 & =\mathrm{e}^{-x}+\mathrm{e}^{-2 x}+\mathrm{e}^{-3 x}+\mathrm{e}^{-4 x}+\mathrm{e}^{-5 x}+\ldots \ldots . . \\
(D-1) e^{-x} & & \mathrm{e}^{-2 x}+\mathrm{e}^{-3 x}+\mathrm{e}^{-4 x}+\mathrm{e}^{-5 x}+\ldots \ldots \ldots \\
(D-1) e^{-2 x} & = & \mathrm{e}^{-3 x}+\mathrm{e}^{-4 x}+\mathrm{e}^{-5 x}+\ldots
\end{array}
$$

Hence $N=(D-1) D$ or $N / D=D-1=\frac{e^{-x}}{1-e^{-x}}=\frac{1}{e^{x}-1}$.
(d) From part (b), the allowed k values are $\pi / L, 2 \pi / L, \ldots, N \pi / L$.

Hence the spacing between allowed k values is π / L, so there are $(L / \pi) \Delta k$ allowed modes in the
wave-number interval Δk (assuming $\Delta k \gg \pi / L$).
(e) Since the allowed k are $\pi / L, \ldots, N \pi / L$, there are N modes.

Follow the problem:
$\mathrm{d} \omega / \mathrm{d} k=_a \omega_{0} \cos _k a$ from part (a) \& (b) $=\frac{1}{2} a \sqrt{\omega_{\max }^{2}-\omega^{2}}, \omega_{\max }=\omega_{0}$. This second form is more convenient for integration.
The number of modes $\mathrm{d} n$ in the interval $\mathrm{d} \omega$ is

$$
\begin{gather*}
d n=(L / \pi) \Delta k=(L / \pi)(\mathrm{d} k / \mathrm{d} \omega) \mathrm{d} \omega \\
=(L / \pi)\left\{_{-} a \omega_{0} \cos { }_{-} k a\right\}^{-1} \mathrm{~d} \omega \\
=\frac{L}{\pi} \frac{2}{a} \frac{1}{\sqrt{\omega_{\max }^{2}-\omega^{2}}} d \omega \\
\quad=\frac{2(N+1)}{\pi} \frac{1}{\sqrt{\omega_{\max }^{2}-\omega^{2}}} d \omega \tag{0.5}
\end{gather*}
$$

0.5 for eitl

Total number of modes $=\int d n=\int_{0}^{\omega_{\max }} \frac{2(N+1)}{\pi} \frac{d \omega}{\sqrt{\omega_{\max }^{2}-\omega^{2}}}=N+1 \approx N$ for large N.

Total crystal energy from (c) and $\mathrm{d} n$ of part (e) is given by

$$
E_{T}=\frac{2 N}{\pi} \int_{0}^{\omega_{\max }} \frac{\hbar \omega}{e^{\hbar \omega / k_{B} T}-1} \frac{d \omega}{\sqrt{\omega_{\max }^{2}-\omega^{2}}}
$$

(f) Observe first from the last formula that E_{T} increases monotonically with temperature since
$\left\{e^{\hbar \omega / k T}-1\right\}^{-1}$ is increasing with T.

When $T \rightarrow 0$, the term -1 in the last result may be neglected in the denominator so
0.2

$$
\begin{aligned}
& E_{T} \approx_{T \rightarrow 0} \frac{2 N}{\pi} \int \hbar \omega e^{-\hbar \omega / k_{B} T} \frac{1}{\sqrt{\omega_{\max }^{2}-\omega^{2}}} d \omega \\
& =\frac{2 N}{\hbar \pi \omega_{\max }}\left(k_{B} T\right)^{2} \int_{0}^{\infty} \frac{x e^{-x}}{\sqrt{1-\left(k_{B} T x / \hbar \omega_{\max }\right)^{2}}} d x
\end{aligned}
$$

0.2
which is quadratic in T (denominator in integral is effectively unity) hence C_{V} is linear in T 0.2 near absolute zero.

Alternatively, if the summation is retained, we have

$$
\begin{align*}
E_{T}= & \frac{2 N}{\pi} \sum_{\omega} \frac{\hbar \omega}{e^{\hbar \omega / k_{B} T}-1} \frac{\Delta \omega}{\sqrt{\omega_{\max }^{2}-\omega^{2}}} \rightarrow_{T \rightarrow 0} \frac{2 N}{\pi} \sum_{\omega} \hbar \omega e^{-\hbar \omega / k_{B} T} \frac{\Delta \omega}{\sqrt{\omega_{\max }^{2}-\omega^{2}}} \\
& =\frac{2 N}{\pi} \frac{\left(k_{B} T\right)^{2}}{\hbar \omega} \sum_{y} e^{-y} y \Delta y \tag{0.5}
\end{align*}
$$

When $T \rightarrow \infty$, use $e^{x} \approx 1+x$ in the denominator,

$$
\begin{equation*}
E_{T} \approx_{T \rightarrow \infty} \frac{2 N}{\pi} \int_{0}^{\omega_{\max }} \frac{\hbar \omega}{\hbar \omega / k_{B} T} \frac{1}{\sqrt{\omega_{\max }^{2}-\omega^{2}}} d \omega=\frac{2 N}{\pi} k_{B} T \frac{\pi}{2} \tag{0.2}
\end{equation*}
$$

which is linear; hence $C_{V} \rightarrow N k_{\mathrm{B}}=R$, the universal gas constant. This is the Dulong-Petit rule. Alternatively, if the summation is retained, write denominator as $e^{\hbar \omega / k_{B} T}-1 \approx \hbar \omega / k_{B} T$ and $E_{T} \rightarrow_{T \rightarrow \infty} \frac{2 N}{\pi} k_{B} T \sum_{\omega} \frac{\Delta \omega}{\sqrt{\omega_{\max }^{2}-\omega^{2}}}$ which is linear in T, so C_{V} is constant.

Sketch of C_{V} versus T :

Answer sheet: Question 1
(a) Equation of motion of the $n^{\text {th }}$ mass is:

$$
m \ddot{X}_{n}=S\left(X_{n+1}-X_{n}\right)-S\left(X_{n}-X_{n-1}\right) .
$$

(b) Angular frequencies ω of the chain's vibration modes are given by the equation:

$$
\omega^{2}=(4 S / m) \sin ^{2} _k a .
$$

Maximum value of ω is: $\quad \omega_{\max }=\omega_{0}=2(S / m)^{-}$

The allowed values of the wave number k are given by:

$$
\pi / L, 2 \pi / L, \ldots, N \pi / L
$$

How many such values of k are there? N
(f) The average energy per frequency mode ω of the crystal is given by:

$$
\langle E(\omega)\rangle=\frac{\hbar \omega}{e^{\hbar \omega / k_{B} T}-1}
$$

(g) There are how many allowed modes in a wave number interval Δk ?

$$
(L / \pi) \Delta k .
$$

(e) The total number of modes in the lattice is: N

Total energy E_{T} of crystal is given by the formula:

$$
E_{T}=\frac{2 N^{\omega_{\max }}}{\pi} \int_{0} \frac{\hbar \omega}{e^{\hbar \omega / k_{k} T}-1} \frac{d \omega}{\sqrt{\omega_{\max }^{2}-\omega^{2}}}
$$

(h) A sketch (graph) of C_{V} versus absolute temperature T is shown below.

For $T \ll 1, C_{V}$ displays the following behaviour: C_{V} is linear in T.
As $T \rightarrow \infty, C_{V}$ displays the following behaviour: $C_{V} \rightarrow N k_{\mathrm{B}}=R$, the universal gas constant.

