Solution to Question 2: The Rail Gun

Proper Solution (taking induced emf into consideration):	
(a) Let I be the current supplied by the battery in the absence of back emf. Let i be the induced current by back emf ε_{b}. Since $\varepsilon_{b}=d \phi / d t=d(B L x) / d t=B L v, \therefore i=B l v / R$. Net current, $I_{N}=I-i=I-B L v / R$. Forces parallel to rail are: Force on rod due to current is $F_{c}=B L I_{N}=B L(I-B L v / R)=B L I-B^{2} L^{2} v / R$. Net force on rod and young man combined is $F_{N}=F_{c}-m g \sin \theta . \quad$ (1) Newton's law: $\quad F_{N}=m a=m d v / d t$. Equating (1) and (2), \& substituting for $F_{c} \& \operatorname{dividing~by~} m$, we obtain the acceleration $d v / d t=\alpha-v / \tau, \quad$ where $\alpha=B I L / m-g \sin \theta$ and $\tau=m R / B^{2} L^{2}$.	0.5

(b)(i)

Since initial velocity of $\operatorname{rod}=0$, and let velocity of rod at time t be $v(t)$, we have

$$
\begin{gathered}
v(t)=v_{\infty}\left(1-e^{-t / \tau}\right) \\
\text { where } \quad v_{\infty}(\theta)=\alpha \tau=\frac{I R}{B L}\left(1-\frac{m g}{B L I} \sin \theta\right) .
\end{gathered}
$$

Let t_{s} be the total time he spent moving along the rail, and v_{s} be his velocity when he leaves the rail, i.e.

$$
\begin{align*}
& v_{s}=v\left(t_{s}\right)=v_{\infty}\left(1-e^{-t_{s} / \tau}\right) . \tag{4}\\
& \therefore t_{s}=-\tau \ln \left(1-v_{s} / v_{\infty}\right) \tag{5}
\end{align*}
$$

(b) (ii)

Let t_{f} be the time in flight:

$$
\begin{equation*}
t_{f}=\frac{2 v_{s} \sin \grave{e}}{g} \tag{6}
\end{equation*}
$$

He must travel a horizontal distance w during t_{f}.

$$
\begin{gather*}
w=\left(v_{s} \cos \grave{e}\right) t_{f} \tag{7}\\
t_{f}=\frac{w}{v_{s} \cos \theta}=\frac{2 v_{s} \sin \theta}{g}
\end{gather*}
$$

From (8), v_{s} is fixed by the angle θ and the width of the strait w

$$
\begin{gather*}
v_{s}=\sqrt{\frac{g w}{\sin 2 \theta}} \tag{9}\\
\therefore t_{s}=-\tau \ln \left(1-\frac{1}{v_{\infty}} \sqrt{\frac{g w}{\sin 2 \theta}}\right),
\end{gather*}
$$

And

$$
t_{f}=\frac{2 \sin \theta}{g} \sqrt{\frac{g w}{\sin 2 \theta}}=\sqrt{\frac{2 w \tan \theta}{g}}
$$

(Substitute (9) in (8))
(Substitute (9) in (5))
(c)

Therefore, total time is: $\quad T=t_{s}+t_{f}=-\tau \ln \left(1-\frac{1}{v_{\infty}} \sqrt{\frac{g w}{\sin 2 \theta}}\right)+\sqrt{\frac{2 w \tan \theta}{g}}$
The values of the parameters are: $\mathrm{B}=10.0 \mathrm{~T}, \mathrm{I}=2424 \mathrm{~A}, \mathrm{~L}=2.00 \mathrm{~m}, \mathrm{R}=1.0 \Omega$, $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}, \mathrm{~m}=80 \mathrm{~kg}$, and $\mathrm{w}=1000 \mathrm{~m}$.

Then $\tau=\frac{m R}{B^{2} L^{2}}=\frac{(80)(1.0)}{(10.0)^{2}(2.00)^{2}}=0.20 \mathrm{~s}$.

$$
\begin{aligned}
\nu_{\infty}(\theta) & =\frac{2424}{(10.0)(2.00)}\left(1-\frac{(80)(10)}{(10.0)(2.00)(2424)} \sin \theta\right) \\
& =121(1-0.0165 \sin \theta)
\end{aligned}
$$

So,

$$
T=t_{s}+t_{f}=-0.20 \ln \left(1-\frac{100}{v_{\infty}} \frac{1}{\sqrt{\sin 2 \theta}}\right)+14.14 \sqrt{\tan \theta}
$$

By plotting T as a function of θ, we obtain the following graph:

Note that the lower bound for the range of θ to plot may be determined by the condition $\mathrm{v}_{\mathrm{s}} / \mathrm{v}_{\infty}<1$ (or the argument of \ln is positive), and since $\mathrm{mg} / \mathrm{BLI}$ is small $(0.0165), \mathrm{v}_{\infty} \approx I R / B L \quad(=121 \mathrm{~m} / \mathrm{s})$, we have the condition $\sin (2 \theta)>0.68$, i.e. $\theta>0.37$. So one may start plotting from $\theta=0.38$.

From the graph, for θ within the range $(\sim 0.38,0.505)$ radian the time T is within 11 s .

Labeling:
0.1 each axis

Unit:
0.1 each axis

Proper Range in θ :
0.3 lower limit
(more than 0.37,
less than 0.5),
0.2 upper limit
(more than 0.5
and less than 0.6)
Proper shape of curve: 0.2

Accurate
intersection at $\theta=0.5: 0.4$
(d)

However, there is another constraint, i.e. the length of rail D. Let D_{s} be the distance travelled during the time interval t_{s}
$\left.D_{s}=\int_{0}^{t_{s}} v(t) d t=v_{\infty} \int_{0}^{t_{s}}\left(1-e^{-t / \tau}\right) l t=v_{\infty}\left(t+\tau e^{-\beta t}\right)\right)_{0}=v_{\infty}\left[t_{s}-\tau\left(1-e^{-\beta t}\right)\right]=v_{\infty} t_{s}-v\left(t_{s}\right) \tau$
i.e.

$$
D_{s}=-\tau\left[v_{\infty}(\theta) \ln \left(1-\frac{1}{v_{\infty}(\theta)} \sqrt{\frac{g w}{\sin 2 \theta}}\right)+\sqrt{\frac{g w}{\sin 2 \theta}}\right]
$$

The graph below shows D_{s} as a function of θ.

It is necessary that $D_{s} \leq D$, which means θ must range between .5 and1.06 radians.

In order to satisfy both conditions, θ must range between $0.5 \& 0.505$ radians.
(Remarks: Using the formula for $t_{f}, t_{s} \& \mathrm{D}$, we get
At $\theta=0.507, t_{f}=10.540, t_{s}=0.466$, giving $\mathrm{T}=11.01 \mathrm{~s}, \& \mathrm{D}=34.3 \mathrm{~m}$
At $\theta=0.506, t_{f}=10.527, t_{s}=0.467$, giving $\mathrm{T}=10.99 \mathrm{~s}, \& \mathrm{D}=34.4 \mathrm{~m}$
At $\theta=0.502, t_{f}=10.478, t_{s}=0.472$, giving $\mathrm{T}=10.95 \mathrm{~s}, \& \mathrm{D}=34.96 \mathrm{~m}$
At $\theta=0.50, \quad t_{f}=10.453, t_{s}=0.474$, giving $\mathrm{T}=10.93 \mathrm{~s}, \& \mathrm{D}=35.2 \mathrm{~m}$,
So the more precise angle range is between 0.502 to 0.507 , but students are not expected to give such answers.
To 2 sig fig $\mathrm{T}=11 \mathrm{~s}$. Range is 0.50 to 0.51 (in degree: 28.6^{0} to 29.2^{0} or 29^{0})

Proper shape of curve: 0.2

Accurate
intersection at $\theta=0.5: 0.4$
Labeling:
0.1 each axis

Unit:

0.1 each axis

Proper Range in θ :
0.3 lower limit (more than 0.4, less than 0.49),
0.2 upper limit (more than 0.51
and less than 1.1)
\square

Alternate Solution (Not taking induced emf into consideration):

If induced emf is not taken into account, there is no induced current, so the net force acting on the combined mass of the young man and rod is

$$
F_{N}=B I L-m g \sin \theta .
$$

And we have instead

$$
d v / d t=\alpha,
$$

where

$$
\alpha=B I L / m-g \sin \theta .
$$

$$
\therefore v(t)=\alpha t
$$

0.2 BIL
$0.2 \mathrm{mg} \sin \theta$

$$
t_{f}=\frac{2 v_{s} \sin \grave{e}}{g}=\frac{2 \alpha t_{s} \sin \grave{e}}{g} .
$$

Therefore,

$$
w=\left(v_{s} \cos \grave{e}\right) t_{f}=\frac{\alpha^{2} t_{s}^{2} \sin 2 \grave{e}}{g},
$$

giving

$$
t_{s}=\frac{1}{\alpha} \sqrt{\frac{g w}{\sin 2 \grave{e}}}
$$

and

$$
t_{f}=\sqrt{\frac{2 w \tan \theta}{g}} .
$$

Hence,

$$
\begin{gathered}
T=t_{s}+t_{f}=\frac{1}{\alpha} \sqrt{\frac{g w}{\sin 2 \grave{e}}}+\sqrt{\frac{2 w \tan \theta}{g}}=\frac{\sqrt{w g}}{\alpha} \frac{\left[1+2\left(\frac{\alpha}{g}\right) \sin \theta\right]}{\sqrt{\sin 2 \grave{e}}} . \\
\text { where } \alpha=B I L / m-g \sin \theta .
\end{gathered}
$$

The values of the parameters are: $\mathrm{B}=10.0 \mathrm{~T}, \mathrm{I}=2424 \mathrm{~A}, \mathrm{~L}=2.00 \mathrm{~m}$, $\mathrm{R}=1.0 \Omega, \mathrm{~g}=10 \mathrm{~m} / \mathrm{s}^{2}, \mathrm{~m}=80 \mathrm{~kg}$, and $\mathrm{w}=1000 \mathrm{~m}$. Then,

$$
T=\frac{100}{\alpha} \frac{[1+0.20 \alpha \sin \theta]}{\sqrt{\sin 2 \grave{e}}}
$$

where $\alpha=606-10 \sin \theta$.

For θ within the range $(\sim 0,0.52)$ radian the time T is within 11 s .

However, there is another constraint, i.e. the length of rail D. Let D_{s} be the distance travelled during the time interval t_{s}

$$
D_{s}=\frac{g w}{2 \alpha \sin 2 \theta}=\frac{5000}{\alpha \sin 2 \theta}
$$

which is plotted below

It is necessary that $D_{s} \leq D$, which means θ must range between 0.11 and 1.43 radians.

In order to satisfy both conditions, θ must range between $0.11 \& 0.52$ radians.

Labeling:
0.1 each axis
Unit:
0.1 each axis
Proper Range in
$\theta:$
0.1 lower limit
(more than 0,
less than 0.5),
0.2 upper limit
(more than 0.52
and less than 0.8)
Proper shape of
curve: 0.2
Accurate
intersection at
$\theta=0.52: 0.4$

Labeling:
0.1 each axis

Unit:
0.1 each axis

Proper Range in θ :
0.1 lower limit
(more than 0.08,
less than 0.11),
0.1 upper limit
(more than 0.52
and less than 1.5)
Proper shape of curve: 0.2

Accurate intersection at $\theta=0.11: 0.4$

