Question 3 - Marking Scheme

(a) Since
$$W(v) = 4\pi \left(\frac{M}{2\pi RT}\right)^{3/2} v^2 e^{-Mv^2/(2RT)}$$
,
 $\overline{v} = \int_0^\infty v \ W(v) \ dv =$
 $= \int_0^\infty v \ 4\pi \left(\frac{M}{2\pi RT}\right)^{3/2} v^2 \ e^{-Mv^2/(2RT)} \ dv$
 $= \int_0^\infty 4\pi \left(\frac{M}{2\pi RT}\right)^{3/2} v^3 \ e^{-Mv^2/(2RT)} \ dv$
 $= 4\pi \left(\frac{M}{2\pi RT}\right)^{3/2} \int_0^\infty v^3 \ e^{-Mv^2/(2RT)} \ dv$
 $= 4\pi \left(\frac{M}{2\pi RT}\right)^{3/2} \frac{4R^2T^2}{2M^2}$
 $= \sqrt{\frac{8RT}{\pi M}}$

Marking Scheme:

Performing the integration correctly:	1 mark
Simplifying	0.5 marks
Subtotal for the section	1.5
marks	

(b) Assuming an ideal gas, PV = N k T, so that the concentration of the gas molecules, *n*, is given by

$$n = \frac{N}{V} = \frac{P}{k T}$$

the impingement rate is given by

$$J = \frac{1}{4} n \overline{\nu}$$
$$= \frac{1}{4} \frac{P}{k T} \sqrt{\frac{8 R T}{\pi M}}$$
$$= P \sqrt{\frac{8 R T}{16 k^2 T^2 \pi M}}$$
$$= P \sqrt{\frac{N_A k}{2 k^2 T \pi M}}$$
$$= P \sqrt{\frac{1}{2 k T \pi m}}$$
$$= \frac{P}{\sqrt{2 \pi m k T}}$$

where we have note that $R = N_A k$ and $m = \frac{M}{N_A}$ (N_A being Avogadro number).

Marking Scheme:

morko				
Subtotal for the section		1.5		
marks				
Using $R = N k$, and the formula for <i>m</i> ;	(0.2 mark each)	0.4		
marks				
Simplifying expression:		0.4		
marks				
Using ideal gas formula to estimate conce	entration of gas molecules:	0.7		

<u>marks</u>

(c) Assuming close packing, there are approximately 4 molecules in an area of 16 r^2 m². Thus, the number of molecules in 1 m² is given by

$$n_1 = \frac{4}{16 (3.6 \times 10^{-10})^2} = 1.9 \times 10^{18} \text{ m}^{-2}$$

However at (273 + 300) K and 133 Pa, the impingement rate for oxygen is

$$J = \frac{P}{\sqrt{2 \pi mkT}}$$

= $\frac{133}{\sqrt{2 \pi \left(\frac{32 \times 10^{-3}}{6.02 \times 10^{23}}\right)}(1.38 \times 10^{-23})573}$
= 2.6 × 10²⁴ m⁻² s⁻¹

Therefore, the time needed for the deposition is $\frac{n_1}{J} = 0.7 \ \mu s$

The calculated time is too short compared with the actual processing.

Marking Scheme:

Estimation of number of molecules in 1 m^2 :	0.4 marks
Calculation the impingement rate:	0.6 marks
Taking note of temperature in Kelvin	0.3 marks
Calculating the time	0.4 marks
Subtotal for the section	1.7

<u>marks</u>

(d) With activation energy of 1 eV and letting the velocity of the oxygen molecule at this energy is v_1 , we have

$$\frac{1}{2} m v_1^2 = 1.6 \times 10^{-19} \text{ J}$$

$$\Rightarrow v_1 = 2453.57 \text{ ms}^{-1}$$

At a temperature of 573 K, the distribution of the gas molecules is

We can estimate the fraction of the molecules with speed greater than 2454 ms⁻¹ using the trapezium rule (or any numerical techniques) with ordinates at 2453, 2453 + 500, 2453 + 1000. The values are as follows:

Velocity, v	Probability, $W(v)$
2453	1.373 x 10 ⁻¹⁰
2953	2.256 x 10 ⁻¹⁴
3453	6.518 x 10 ⁻¹⁹

Using trapezium rule, the fraction of molecules with speed greater than 2453 ms⁻¹ is given by

fraction of molecules = $\frac{500}{2} \left[(1.373 \times 10^{-10}) + (2 \times 2.256 \times 10^{-14}) + (6.518 \times 10^{-19}) \right]$ $f = 3.43 \times 10^{-8}$

Thus the time needed for the deposition is given by 0.7 $\mu s/(3.43 \ x \ 10^{-8})$ that is 20.4 s

Marking Scheme

Computing the value of the cut-off energy or velocity:	0.6
marks	
Estimating the fraction of molecules	1.2 marks
Correct method of final time	0.4 marks
Correct value of final time	0.6 marks
Subtotal for the section	2.8

<u>marks</u>

(e) For destructive interference, optical path difference = $2 d = \frac{\lambda'}{2}$ where $\lambda' = \frac{\lambda_{air}}{n}$ is the wavelength in the coating.

The relation is given by:

$$d = \frac{\lambda_{\text{air}}}{4 n}$$

Plugging in the given values, one gets d = 105 or 105.2 nm.

Derive equation:

TOTAL	10 marks
Subtotal for Section	2.5 marks
Computation of <i>d</i> : Getting the correct number of significant figures: Subtotal:	0.6 marks 0.6 marks 1.2 marks
Subtotal:	1.3 marks
Putting everything together to get the final expression marks	0.6
Knowing that there is a phase change at the reflection	0.5
Finding the optical path length	0.2