Theoretical Competition

I. Satellite's orbit transfer

In the near future we ourselves may take part in launching of a satellite which, in point of view of physics, requires only the use of simple mechanics.

a) A satellite of mass m is presently circling the Earth of mass M in a circular orbit of radius R_{0}. What is the speed $\left(u_{0}\right)$ of mass m in terms of M, R_{0} and the universal gravitation constant G ?
(1 point)
b) We are to put this satellite into a trajectory that will take it to point P at distance R_{1} from the centre of the Earth by increasing (almost instantaneously) its velocity at point Q from u_{0} to u_{1}. What is the value of u_{1} in terms of u_{0}, R_{0}, R_{1} ?
(2 points)
c) Deduce the minimum value of u_{1} in term of u_{0} that will allow the satellite to leave the Earth's influence completely.
(1 point)
d) (Referring to part b.) What is the velocity $\left(u_{2}\right)$ of the satellite at point P in terms of u_{0}, R_{0}, R_{1} ?
e) Now, we want to change the orbit of the satellite at point P into a circular orbit of radius R_{1} by raising the value of u_{2} (almost instantaneously) to u_{3}.
What is the magnitude of u_{3} in terms of u_{2}, R_{0}, R_{1} ?
(1 point)
f)

If the satellite is slightly and instantaneously perturbed in the radial direction so that it deviates from its previously perfectly circular orbit of radius R_{1}, derive the period of its oscillation T of r about the mean distance R_{1}.

Hint: Students may make use (if necessary) of the equation of motion of a satellite in orbit:

$$
\begin{equation*}
m\left[\frac{d^{2}}{d t^{2}} r-\left(\frac{d}{d t} \theta\right)^{2} r\right]=-G \frac{M m}{r^{2}} \tag{1}
\end{equation*}
$$

and the conservation of angular momentum:

$$
\begin{equation*}
m r^{2} \frac{d}{d t} \theta=\text { constant } \tag{2}
\end{equation*}
$$

(3 points)
g) Give a rough sketch of the whole perturbed orbit together with the unperturbed one.
(1 point)

