Solution and Marking Scheme

Theory

I. Satellite's orbit transfer

a) $\frac{m u_{0}{ }^{2}}{R_{0}}=\frac{G M m}{R_{0}{ }^{2}}, \quad u_{0}=\sqrt{\frac{G M}{R_{0}}}$
b) conservation of angular momentum: $m u_{1} R_{0}=m u_{2} R_{1}$ conservation of energy: $\frac{1}{2} m u_{2}{ }^{2}-\frac{G M m}{R_{1}}=\frac{1}{2} m u_{1}{ }^{2}-\frac{G M m}{R_{0}}$

$$
\begin{aligned}
{\left[\left(\frac{R_{0}}{R_{1}}\right)^{2}-1\right] u_{1}^{2} } & =2 G M\left[\frac{1}{R_{1}}-\frac{1}{R_{0}}\right] \\
\frac{\left(R_{0}-R_{1}\right)\left(R_{0}+R_{1}\right)}{R_{1}^{2}} u_{1}^{2} & =(2 G M) \frac{\left(R_{0}-R_{1}\right)}{R_{0} R_{1}} \\
u_{1}=\sqrt{\frac{G M}{R_{0}}} \sqrt{\frac{2 R_{1}}{R_{1}+R_{0}}} & =u_{0} \sqrt{\frac{2 R_{1}}{R_{1}+R_{0}}}
\end{aligned}
$$

c)

$$
\begin{equation*}
\lim _{R_{1} \rightarrow \infty} u_{1}=\sqrt{2} u_{0} \tag{1point}
\end{equation*}
$$

d)

$$
u_{2}=u_{1} \frac{R_{0}}{R_{1}}=u_{0} \frac{\sqrt{2} R_{0}}{\sqrt{R_{1}\left(R_{1}+R_{0}\right)}}
$$

e) $u_{3}=\sqrt{\frac{G M}{R_{1}}}=\sqrt{\frac{G M}{R_{0}}} \sqrt{\frac{R_{0}}{R_{1}}}=u_{0} \sqrt{\frac{R_{0}}{R_{1}}}$

$$
=\sqrt{\frac{R_{0}}{R_{1}}} \sqrt{\frac{R_{1}\left(R_{1}+R_{0}\right)}{\sqrt{2} R_{0}}} u_{2}
$$

$$
\begin{equation*}
u_{3}=u_{2} \sqrt{\frac{R_{1}+R_{0}}{2 R_{0}}} \tag{1point}
\end{equation*}
$$

f) (3 points) combining equations (1) and (2) :

$$
\frac{d^{2}}{d t^{2}} r-\frac{C / m}{r^{3}}=-\frac{G M}{r^{2}}
$$

and for the circular orbit of radius R_{1} we have $\frac{C}{m}=G M R_{1}$
hence $\frac{d^{2}}{d t^{2}} r-\frac{G M R_{1}}{r^{3}}=-\frac{G M}{r^{2}}$
putting $\quad r=R_{1}+\eta$, where $\eta \ll R_{1}$

$$
\therefore \frac{d^{2}}{d t^{2}} \eta-\frac{G M R_{1}}{R_{1}^{3}\left(1+\frac{\eta}{R_{1}}\right)^{3}}=-\frac{G M}{R_{1}^{2}\left(1+\frac{\eta}{R_{1}}\right)^{2}}
$$

$$
\begin{aligned}
& \frac{d^{2}}{d t^{2}} \eta-\frac{G M}{R_{1}^{2}}\left(1-3 \frac{\eta}{R_{1}}\right) \approx-\frac{G M}{R_{1}^{2}}\left(1-2 \frac{\eta}{R_{1}}\right) \\
& \frac{d^{2}}{d t^{2}} \eta \approx-\frac{G M}{R_{1}^{3}} \eta
\end{aligned}
$$

the frequency of oscillation about mean distance is $f=\frac{1}{2 \pi} \sqrt{\frac{G M}{R_{1}{ }^{3}}}$ the period $\quad T=\frac{1}{f}=2 \pi \sqrt{\frac{R_{1}^{3}}{G M}}$
Note that this period is the same as the orbital period
h) (1 point)

