Solution and Marking Scheme

Theory

II. Optical Gyroscope

The light wave moves with speed $c' = \frac{c}{\mu}$ in the medium having refractive index μ . Wavelength of light in medium $\lambda' = \frac{\lambda}{\mu}$, where λ is the wavelength of light in vacuum.

a) (2 points)

transit time for the CW beam:
$$t^+ = \frac{2\pi R + R\Omega t^+}{c'} = \frac{2\pi R}{c'} (1 - \frac{R\Omega}{c'})^{-1}$$

transit time for the CCW beam:
$$t^- = \frac{2\pi R - R\Omega t^-}{c'} = \frac{2\pi R}{c'} (1 + \frac{R\Omega}{c'})^{-1}$$

the time difference between t^+ and t^- : $\Delta t = \frac{4\pi R^2 \Omega}{(c')^2 - R^2 \Omega^2}$

since
$$(R\Omega)^2 \ll (c')^2$$
 $\Delta t \approx \frac{4\pi R^2 \Omega}{(c')^2}$

b) (2 points) the round-trip optical path difference, ΔL , is given by

$$\Delta L = c' \Delta t = \frac{4\pi R^2 \Omega}{c'}$$

c) (1 point) $\Delta L \cong 4.5 \times 10^{-12} \text{ m.}$

d) (1 point) the corresponding optical phase difference $\Delta \theta$ is, $\Delta \theta = \frac{2\pi\Delta L}{\lambda'} = \frac{8\pi^2 R^2 \Omega}{c\lambda'}$, where $\lambda' = \frac{\lambda}{\mu}$

for N turns of fiber optic ring,

$$\Delta\theta = \frac{8\pi^2 R^2 N\Omega}{c\lambda'}$$

e) (2 points)

The figure shows the triangular ring rotating about the centre o with the angular speed Ω in the clockwise direction. Without loosing generality, let's first consider the velocity of light along AC in the CW and CCW direction,

$$v_{\pm} = c \pm R\Omega \cos\theta = c \pm \Omega h$$
, where h is constant
 $\tau_{\pm} = \frac{L/3}{v_{\pm}} = \frac{L/3}{c \pm \Omega h} \approx \frac{L/3}{c} (1 \mp \frac{\Omega h}{c})$

where τ_{\pm} is the time taken for light travelling along AC in the CW and CCW. $t_{\pm} = \frac{L}{v_{\pm}} = \frac{L}{c \pm \Omega h} \approx \frac{L}{c} (1 \mp \frac{\Omega h}{c})$, where L is the perimeter of the triangular

ring.

Therefore, the time difference of light travelling in one complete cycle.

 $\Delta t = \frac{2\Omega Lh}{c^2} = \frac{4\Omega}{c^2} \left(\frac{1}{2}Lh\right) = \frac{4\Omega A}{c^2}, \text{ where } A \text{ is the area of the triangular ring.}$

f) The resonance frequencies associated with L_{\pm} corresponding to the effective cavity lengths seen by CW and CCW propagating beams respectively is,

$$L_{+} = ct^{+} \approx L(1 - \frac{\Omega h}{c})$$
$$L_{-} = ct^{-} \approx L(1 + \frac{\Omega h}{c})$$

where L_{\pm} is the perimeter of the equilateral triangle in the CW (+) and CCW (-) and we also use the fact that $h\Omega << c$. Therefore,

$$\Delta L = L_{-} - L_{+} = 2L \frac{\Omega h}{c} = \frac{4\Omega A}{c} = \frac{\Omega L^{2}}{\sqrt{3} c}$$

The condition to sustain the laser oscillation (given in the problem),

$$v_{\pm} = \frac{m}{L_{\pm}}c, \text{ m} = 1, 2, 3, \dots \text{ integers}$$
(1 point)
$$\Delta v = v_{-} - v_{+} = \frac{m}{L}c - \frac{m}{L_{\pm}}c \approx mc\frac{\Delta L}{L^{2}} = v\frac{\Delta L}{L}$$
(1 point)

the approximation arises from $L_+L_- \approx L^2$

where L is the perimeter of the triangular ring. Hence,

$$\Delta v = \frac{\Delta L}{L} v = \frac{4A}{Lc} v \Omega = \frac{1}{\sqrt{3}} \frac{L}{\lambda} \Omega$$
(1 point)