Solution and Marking Scheme

Theory

II. Optical Gyroscope

The light wave moves with speed $c^{\prime}=\frac{c}{\mu}$ in the medium having refractive index μ. Wavelength of light in medium $\lambda^{\prime}=\frac{\lambda}{\mu}$, where λ is the wavelength of light in vacuum.
a) (2 points)
transit time for the CW beam: $t^{+}=\frac{2 \pi R+R \Omega t^{+}}{c^{\prime}}=\frac{2 \pi R}{c^{\prime}}\left(1-\frac{R \Omega}{c^{\prime}}\right)^{-1}$
transit time for the CCW beam: $t^{-}=\frac{2 \pi R-R \Omega t^{-}}{c^{\prime}}=\frac{2 \pi R}{c^{\prime}}\left(1+\frac{R \Omega}{c^{\prime}}\right)^{-1}$
the time difference between t^{+}and $t^{-}: \Delta t=\frac{4 \pi R^{2} \Omega}{\left(c^{\prime}\right)^{2}-R^{2} \Omega^{2}}$
since $\quad(R \Omega)^{2} \ll\left(c^{\prime}\right)^{2} \quad \Delta t \approx \frac{4 \pi R^{2} \Omega}{\left(c^{\prime}\right)^{2}}$
b) (2 points) the round-trip optical path difference, ΔL, is given by
$\Delta L=c^{\prime} \Delta t=\frac{4 \pi R^{2} \Omega}{c^{\prime}}$
c) (1 point) $\Delta \mathrm{L} \cong 4.5 \times 10^{-12} \mathrm{~m}$.
d) (1 point) the corresponding optical phase difference $\Delta \theta$ is,
$\Delta \theta=\frac{2 \pi \Delta L}{\lambda^{\prime}}=\frac{8 \pi^{2} R^{2} \Omega}{c \lambda^{\prime}}$, where $\lambda^{\prime}=\frac{\lambda}{\mu}$
for N turns of fiber optic ring,
$\Delta \theta=\frac{8 \pi^{2} R^{2} N \Omega}{c \lambda^{\prime}}$
e) (2 points)

The figure shows the triangular ring rotating about the centre o with the angular speed Ω in the clockwise direction. Without loosing generality, let's first consider the velocity of light along AC in the CW and CCW direction,

$$
\begin{aligned}
& v_{ \pm}=c \pm R \Omega \cos \theta=c \pm \Omega h, \text { where } h \text { is constant. } \\
& \tau_{ \pm}=\frac{L / 3}{v_{ \pm}}=\frac{L / 3}{c \pm \Omega h} \approx \frac{L / 3}{c}\left(1 \mp \frac{\Omega h}{c}\right)
\end{aligned}
$$

where $\tau_{ \pm}$is the time taken for light travelling along AC in the CW and CCW. $t_{ \pm}=\frac{L}{v_{ \pm}}=\frac{L}{c \pm \Omega h} \approx \frac{L}{c}\left(1 \mp \frac{\Omega h}{c}\right)$, where L is the perimeter of the triangular ring.

Therefore, the time difference of light travelling in one complete cycle.

$$
\Delta t=\frac{2 \Omega L h}{c^{2}}=\frac{4 \Omega}{c^{2}}\left(\frac{1}{2} L h\right)=\frac{4 \Omega A}{c^{2}}, \text { where } A \text { is the area of the triangular ring. }
$$

f) The resonance frequencies associated with $L_{ \pm}$corresponding to the effective cavity lengths seen by CW and CCW propagating beams respectively is,
$L_{+}=c t^{+} \approx L\left(1-\frac{\Omega h}{c}\right)$
$L_{-}=c t^{-} \approx L\left(1+\frac{\Omega h}{c}\right)$
where $\mathrm{L}_{ \pm}$is the perimeter of the equilateral triangle in the $\mathrm{CW}(+)$ and $\mathrm{CCW}(-)$ and we also use the fact that $h \Omega \ll c$. Therefore,

$$
\Delta L=L_{-}-L_{+}=2 L \frac{\Omega h}{c}=\frac{4 \Omega A}{c}=\frac{\Omega L^{2}}{\sqrt{3} c}
$$

The condition to sustain the laser oscillation (given in the problem),

$$
\begin{align*}
& v_{ \pm}=\frac{m}{L_{ \pm}} c, \mathrm{~m}=1,2,3, \ldots \text { integers } \tag{1point}\\
& \Delta v=v_{-}-v_{+}=\frac{m}{L_{-}} c-\frac{m}{L_{+}} c \approx m c \frac{\Delta L}{L^{2}}=v \frac{\Delta L}{L} \tag{1point}
\end{align*}
$$

the approximation arises from $L_{+} L_{-} \approx L^{2}$
where L is the perimeter of the triangular ring. Hence,

$$
\begin{equation*}
\Delta v=\frac{\Delta L}{L} v=\frac{4 A}{L c} v \Omega=\frac{1}{\sqrt{3}} \frac{L}{\lambda} \Omega \tag{1point}
\end{equation*}
$$

