Solutions of Problem No. 1 Optical fiber

1.a. At both sides of the point O (outside and inside the fiber), according to Snell law, we have:

$$
\begin{equation*}
n_{0} \sin \theta_{\mathrm{i}}=n_{1} \sin \theta_{1} \tag{1}
\end{equation*}
$$

where θ_{1} is the value of angle θ at point O inside the fiber.
The light trajectory lays in the $x O z$ plane. Because the refraction index n varies along x direction, we divide $O x$ axis into small elements $d x$, so that in each of these elements n can be considered as constant. We have, then:

$$
\begin{equation*}
n \sin i=(n+d n) \cdot \sin (i+d i) \tag{2}
\end{equation*}
$$

where i is the angle between the light trajectory and x direction. Because $\theta+i=\frac{\pi}{2}$, then

$$
\begin{equation*}
n \cos \theta=(n+d n) \cdot \cos (\theta+d \theta) \tag{3}
\end{equation*}
$$

Thus, at each point of coordinate x on the light trajectory, we have:

$$
\begin{equation*}
n \cos \theta=n_{1} \sqrt{1-\alpha^{2} x^{2}} \cos \theta=n_{1} \cos \theta_{1} \tag{4}
\end{equation*}
$$

Because

$$
\begin{equation*}
\boldsymbol{\operatorname { c o s }} \theta_{1}=\sqrt{1-\sin ^{2} \theta_{1}}=\sqrt{1-\frac{\boldsymbol{\operatorname { s i n }}^{2} \theta_{\mathrm{i}}}{n_{1}^{2}}} \tag{5}
\end{equation*}
$$

we have

$$
n \cos \theta=n_{1} \cos \theta_{1}=n_{1} \sqrt{1-\frac{\sin ^{2} \theta_{\mathrm{i}}}{n_{1}^{2}}}=\sqrt{n_{1}^{2}-\sin ^{2} \theta_{\mathrm{i}}}
$$

Then

$$
\begin{equation*}
n \cos \theta=C=\sqrt{n_{1}^{2}-\sin ^{2} \theta_{\mathrm{i}}} \tag{6}
\end{equation*}
$$

1.2. Because $\frac{d x}{d z}=x^{\prime}=\boldsymbol{\operatorname { t a n }} \theta$, from (6) we have:

$$
\begin{equation*}
n_{1} \sqrt{1-\alpha^{2} x^{2}} \boldsymbol{\operatorname { c o s }} \theta=n_{1} \sqrt{1-\alpha^{2} x^{2}}\left(1+\boldsymbol{\operatorname { t a n }}^{2} \theta\right)^{-\frac{1}{2}}=C \tag{7}
\end{equation*}
$$

Squaring the two sides, we obtain:

$$
\left(1-\alpha^{2} x^{2}\right)\left(1+\boldsymbol{\operatorname { t a n }}^{2} \theta\right)^{-1}=\frac{C^{2}}{n_{1}^{2}}
$$

and

$$
\begin{equation*}
1+x^{\prime 2}=\left(1-\alpha^{2} x^{2}\right) \frac{n_{1}^{2}}{C^{2}} \tag{8}
\end{equation*}
$$

After derivating the two sides of (8) versus z, we get:

$$
\begin{equation*}
x^{\prime \prime}+\frac{\alpha^{2} n_{1}^{2}}{C^{2}} x=0 \tag{9}
\end{equation*}
$$

Because $n=n_{1} \sqrt{1-\alpha^{2} x^{2}}$ and

- $n=n_{1}$ at $x=0$
- $n=n_{2}$ at $x=a$
we get

$$
\alpha=\frac{\sqrt{n_{1}^{2}-n_{2}^{2}}}{a \cdot n_{1}}
$$

Finally, we get the equation for x "

$$
\begin{equation*}
x^{\prime \prime}+\frac{n_{1}^{2}-n_{2}^{2}}{a^{2}\left(n_{1}^{2}-\boldsymbol{\operatorname { s i n }}^{2} \theta_{i}\right)} \cdot x=0 \tag{10}
\end{equation*}
$$

1.c. The equation for the light trajectory is obtained by solving (10). This is an equation similar to that for an harmonic oscillation, which solution can be written right away

$$
\begin{equation*}
x=x_{0} \sin (p z+q) \tag{11}
\end{equation*}
$$

with

$$
p=\frac{1}{a} \sqrt{\frac{n_{1}^{2}-n_{2}^{2}}{n_{1}^{2}-\boldsymbol{\operatorname { s i n }}^{2} \theta_{\mathrm{i}}}}
$$

The parameters p and q are determined from the boundary conditions:
-at $z=0, x=0$, hence $q=0$
-at $z=0$ inside the fiber, $x^{\prime}=\frac{d x}{d z}=\boldsymbol{\operatorname { t a n }} \theta_{1}$, then

$$
\begin{equation*}
x_{0}=\frac{\boldsymbol{\operatorname { t a n }} \theta_{1}}{p}=\frac{a \cdot \boldsymbol{\operatorname { s i n }} \theta_{\mathrm{i}}}{\sqrt{n_{1}^{2}-n_{2}^{2}}} \tag{12}
\end{equation*}
$$

The equation for the trajectory of the light inside the fiber is:

$$
\begin{equation*}
x=\frac{a \sin \theta_{\mathrm{i}}}{\sqrt{n_{1}^{2}-n_{2}^{2}}} \cdot \sin \left(\sqrt{\frac{n_{1}^{2}-n_{2}^{2}}{n_{1}^{2}-\sin ^{2} \theta_{\mathrm{i}}}} \cdot \frac{z}{a}\right) \tag{13}
\end{equation*}
$$

1.d. Here is a sketch of the trajectories of two rays entering the fiber at O , under different incident angles.

2.a. The condition for the light to propagate along the fiber is that $x_{0} \leq a$. This means that:

$$
\frac{a \sin \theta_{\mathrm{i}}}{\sqrt{n_{1}^{2}-n_{2}^{2}}} \leq a
$$

or:

$$
\begin{equation*}
\sin \theta_{\mathrm{i}} \leq \sqrt{n_{1}^{2}-n_{2}^{2}} \tag{14}
\end{equation*}
$$

Thus the incident angle θ_{i} must not exceed $\theta_{\mathrm{i} \text { M }}$, with

$$
\begin{equation*}
\boldsymbol{\operatorname { s i n }} \theta_{\mathrm{iM}}=\sqrt{n_{1}^{2}-n_{2}^{2}}=0.344 \tag{14a}
\end{equation*}
$$

or:

$$
\theta_{\mathrm{i}} \leq \theta_{\mathrm{i} M}=\operatorname{Arcsin}\left(\sqrt{n_{1}^{2}-n_{2}^{2}}\right)=\operatorname{Arcsin} 0.344=0.351 \mathrm{rad}=20.13^{\circ}
$$

2.b. The crossing points of the light beam with $\mathrm{O} z$ axis must satisfy the condition $p z=k \pi$, with k - an integer. The z coordinates of these points are:

$$
\begin{equation*}
z=\frac{k \pi}{p}=k \pi a \sqrt{\frac{n_{1}^{2}-\boldsymbol{\operatorname { s i n }}^{2} \theta_{\mathrm{i}}}{n_{1}^{2}-n_{2}^{2}}} \tag{15}
\end{equation*}
$$

except for $\theta_{\mathrm{i}}=0$.
3.a. The rays entering the fiber at different incident angles have different trajectories. As a consequence, the propagation speeds of the rays along the fiber should be different.

The light trajectories are sinusoidal as given in (13). Let us calculate the time τ it takes the light to propagate from point O to its first crossing point with $\mathrm{O} z$ axis. This is twice the time it takes the light to propagate from point O to its position most distant from Oz axis.

The time required for the light to travel a small segment $d s$ along its trajectory is

$$
\begin{aligned}
d t=\frac{n}{c} d s & =\frac{n}{c} \sqrt{d x^{2}+d z^{2}}=\frac{n}{c} \sqrt{1+\frac{d z^{2}}{d x^{2}}} \cdot d x \\
& =\frac{n}{c} \sqrt{1+\left(\frac{1}{\boldsymbol{\operatorname { t a n }} \theta}\right)^{2}} \cdot d x=\frac{n}{c} \frac{d x}{\boldsymbol{\operatorname { s i n }} \theta}
\end{aligned}
$$

From (6), we have

$$
d t=\frac{n_{1}^{2}\left(1-\alpha^{2} x^{2}\right)}{c \cdot \sqrt{\sin ^{2} \theta_{\mathrm{i}}-n_{1}^{2} \alpha^{2} x^{2}}} \cdot d x
$$

and

$$
\begin{align*}
\frac{\tau}{2}=\int_{0}^{x_{0}} d t & =\frac{n_{1}^{2}}{c}\left[\int_{0}^{x_{0}} \frac{d x}{\sqrt{\boldsymbol{\operatorname { s i n }}^{2} \theta_{\mathrm{i}}-n_{1}^{2} \alpha^{2} x^{2}}}-\alpha^{2} \int_{0}^{x_{0}} \frac{x^{2} d x}{\sqrt{\boldsymbol{\operatorname { s i n }}^{2} \theta_{\mathrm{i}}-n_{1}^{2} \alpha^{2} x^{2}}}\right] \tag{16}\\
& =\frac{n_{1}^{2}}{c}\left[I_{1}-\alpha^{2} I_{2}\right]
\end{align*}
$$

where

$$
\begin{gather*}
I_{1}=\left.\frac{1}{n_{1} \alpha} \operatorname{Arc} \sin \frac{n_{1} \alpha x}{\sin \theta_{\mathrm{i}}}\right|_{0} ^{x_{0}}=\frac{\pi a}{2 \sqrt{n_{1}^{2}-n_{2}^{2}}} \tag{17}\\
I_{2}=\left.\frac{-x \sqrt{\sin ^{2} \theta_{\mathrm{i}}-n_{1}^{2} \alpha^{2} x^{2}}}{2 n_{1}^{2} \alpha^{2}}\right|_{0} ^{x_{0}}+\left.\frac{\sin ^{2} \theta_{\mathrm{i}} \cdot \operatorname{Arc} \sin \frac{n_{1} \alpha x}{\sin \theta_{\mathrm{i}}}}{2 n_{1}^{3} \alpha^{3}}\right|_{0} ^{x_{0}}=\frac{\pi \sin ^{2} \theta_{\mathrm{i}}}{4 n_{1}^{3} \alpha^{3}} \tag{18}
\end{gather*}
$$

Using (16), (17), (18), we obtain

$$
\begin{equation*}
\tau=\frac{\pi a \cdot n_{1}^{2}}{c \sqrt{n_{1}^{2}-n_{2}^{2}}}\left(1-\frac{\sin ^{2} \theta_{\mathrm{i}}}{2 n_{1}^{2}}\right) \tag{19}
\end{equation*}
$$

The propagation speed along the fiber is $v=\frac{z}{\tau}$, where z is the coordinate of the first crossing point, which is determined by (15) for $k=1$. Because z and τ depend on the incident angle θ_{i}, v also depends on θ_{i}.

For $\theta_{\mathrm{i}}=\theta_{\mathrm{iM}}$, from (14a), we get

$$
\begin{equation*}
v_{\mathrm{M}}=\frac{\pi a n_{2}}{\sqrt{n_{1}^{2}-n_{2}^{2}}} \cdot \frac{2 c \sqrt{n_{1}^{2}-n_{2}^{2}}}{\pi a n_{1}^{2}}\left(1+\frac{n_{2}^{2}}{n_{1}^{2}}\right)^{-1}=\frac{2 c n_{2}}{n_{1}^{2}+n_{2}^{2}} \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{\mathrm{M}}=\frac{2 \times 2.998 \times 10^{8} \times 1.460}{1.500^{2}+1.460^{2}}=1.998 \times 10^{8} \mathrm{~m} / \mathrm{s} \tag{20a}
\end{equation*}
$$

The propagation speed of the light along the $\mathrm{O} z$ axis is

$$
\begin{equation*}
v=\frac{c}{n_{1}} \tag{21}
\end{equation*}
$$

because the refraction index is n_{1} on the axis of the fiber.
The numerical value is

$$
\begin{equation*}
v_{0}=\frac{2.998 \times 10^{8}}{1.5}=1.999 \times 10^{8} \mathrm{~m} / \mathrm{s} \tag{21a}
\end{equation*}
$$

3.b. If the beam of the light pulses is formed by rays converging at O, then the rays with different incident angles has different propagation speeds. The two rays of incident angles $\theta_{i}=0$ and $\theta_{i}=\theta_{\mathrm{iM}}$ arrive to the plane z with a time delay

$$
\begin{equation*}
\Delta t=\frac{z}{v_{\mathrm{M}}}-\frac{z}{v_{0}}=\frac{z}{c} \cdot \frac{\left(n_{1}-n_{2}\right)^{2}}{2 n_{2}} \tag{22}
\end{equation*}
$$

This means that a very short light pulse becomes a pulse of finite width Δt given by (22) at the plane z. If two consecutive pulses enter the fiber with a delay greater than Δt, then at the plane z, they are separated. Hence the repetition frequency of the pulses must not exceed the maximal value:

$$
\begin{equation*}
f_{\mathrm{M}}=(\Delta t)^{-1}=\frac{2 \cdot c \cdot n_{2}}{z \cdot\left(n_{1}-n_{2}\right)^{2}} \tag{23}
\end{equation*}
$$

If $z=1000 \mathrm{~m}$, then

$$
f_{\mathrm{M}}=\frac{2 \times 2.998 \times 10^{8} \times 1.460}{1000 \times(1.500-1.460)^{2}}=547.1 \mathrm{MHz}
$$

