Solution of Problem No. 3 Compression and expansion of a two gases system

1.

a. The isotherm curve is shown in Figure 1.

Figure 1

$$
\begin{aligned}
V_{0}=\frac{R T_{1}}{p_{1}}=\frac{8.31 \times 373}{0.5 \times 1.013 \times 10^{5}} & =0.0612 \mathrm{~m}^{3} \\
& =61.2 \mathrm{dm}^{3}
\end{aligned}
$$

b. The process of compressing can be divided into 3 stages:

$$
\begin{array}{crccc}
\left(p_{1}, 2 V_{0}\right) \rightarrow & \left(2 p_{1}, V_{0}\right) \\
(1) & (2) & \rightarrow & \left(2 p_{1}, V_{0} / 2\right) & \rightarrow \\
\left(3 p_{1}, V_{0}\right) \tag{4}\\
(4)
\end{array}
$$

The work in each stage can be calculated as follows:

$$
\begin{aligned}
& A_{12}=-\int_{2 V_{0}}^{V_{0}} p d V=2 R T_{1} \int_{V_{0}}^{2 V_{0}} \frac{d V}{V}=2 R T_{1} \ln 2=4297 \mathrm{~J} \\
& A_{23}=2 p_{1}\left(V_{0}-V_{0} / 2\right)=R T_{1}=3100 \mathrm{~J} \\
& A_{34}=-\int_{\frac{1}{2} V_{0}}^{\frac{1}{1} V_{0}} p^{\prime} d V=R T_{1} \int_{\frac{1}{4} V_{0}}^{\frac{1}{2} V_{0}} \frac{d V}{V}=R T_{1} \ln 2=2149 \mathrm{~J} .
\end{aligned}
$$

The total work of gases compressing is:

$$
\begin{equation*}
A=A_{12}+A_{23}+A_{34}=9545 \mathrm{~J} \cong 9.55 \mathrm{~kJ} \tag{1}
\end{equation*}
$$

c. In the second stage 23, all the water vapor (one mole) condenses. The heat Q^{\prime} delivered in the process equals the sum of the work A and the decrease ΔU of internal energy of one mole of water vapor in the condensing process.

$$
Q^{\prime}=\Delta U+A_{12}+A_{23}+A_{34}
$$

One can remark that $\Delta U+A_{23}$ is the heat delivered when one mole of water vapor condenses, and equals $0.018 \times L$. Thus

$$
\begin{equation*}
Q^{\prime}=\Delta U+A_{11}+A_{23}+A_{34}=0.018 \times L+A_{11}+A_{34}=46.946 \mathrm{~J} \cong 47 \mathrm{~kJ} \tag{2}
\end{equation*}
$$

2. The process of compression (2. a.) and expansion (2.c.) of gases can be divided into several stages. The stages are limited by the following states:

State	Left compartment Volume I Pressure \| (atm.)	Right compartment Volume I Pressure \| (atm.)	Total volume	Pressure on piston (atm.)
1	$\begin{array}{lll}V_{0} & \text { I } & 0.5\end{array}$	$V_{0} \quad$ I 0.5	$2 V_{0}$	0.5
2	$V_{0} \quad$ I 0.5	$0.5 V_{0} \quad$ । 1	$1.5 V_{0}$	1
3	$0.5 V_{0} \quad$ । 1	$V_{0} / 3 \quad 11.5$	5/6 V 0	1.5
4	$0 \quad 11$	$\begin{array}{lll}V_{0} / 3 & \text { I } 1.5\end{array}$	$V_{0} / 3$	1.5
5	$0 \quad \mid 1.5$	$V_{0} / 4$ I 2	$V_{0} / 4$	2
6	$\begin{array}{lll}0 & 1.5\end{array}$	$V_{0} / 3 \quad 11.5$	$V_{0} / 3$	1.5
7	$0 \quad 11$	$\begin{array}{lll}V_{0} & \text { I } & 0.5\end{array}$	V_{0}	0.5
8	$0.5 V_{0} \quad$ \| 1	$\begin{array}{lll}V_{0} & \text { I } & 0.5\end{array}$	$1.5 V_{0}$	0.5
9	$V_{0}(2-\sqrt{2}) \mid(\sqrt{2}+2) / 4$	$V_{0} \sqrt{2} \quad \mid \sqrt{2 / 4}$	$2 V_{0}$	$\sqrt{2 / 4}=0.35$

a. See figure 2 below.
b. The work A_{p} done by the piston in the process of compressing the gases equals the sum of the work A calculated in 1 . and the work done by the force of friction. The latter equals $0.5 \mathrm{~atm} . \times V_{0}=p_{1} V_{0}$ (the force of kinetic friction appears in the process 234 during which the displacement of the partition NM corresponding to a variation V_{0} of volume of the left compartment). Then, we have:

$$
A_{\mathrm{p}}=A+p_{1} V_{0}=9545+8.31 \times 373=12645 \mathrm{~J} \cong 12.65 \mathrm{~kJ}
$$

c. In process 89 the pressure in the left compartment is always larger than the pressure in the right one (with a difference of 0.5 atm .). If p denotes the pressure in the right compartment, the pressure in the left one will be $p+0.5 \mathrm{~atm}$.

Let V be the total volume in process 89 , we have

$$
\frac{R T_{1}}{p}+\frac{R T_{1}}{p+0.5}=V
$$

with $V=2 V_{0}=\frac{2 R T_{1}}{0.5}, p$ can be defined by $\frac{R T_{1}}{p}+\frac{R T_{1}}{p+0.5}=\frac{2 R T_{1}}{0.5}$
This is equivalent to:

$$
\begin{aligned}
& p+0.5+p=4 p \cdot(p+0.5) \\
& p=\frac{1}{\sqrt{8}}=\frac{\sqrt{2}}{4}=0.35 \mathrm{~atm} .
\end{aligned}
$$

The pressure in the right compartment is $p=0.35 \mathrm{~atm}$.
The volume of the right compartment is $\sqrt{2} V_{0}$
The pressure in the left compartment is $p+0.35=0.85 \mathrm{~atm}$.
The volume of the left compartment is $(2-\sqrt{2}) V_{0}$

Figure 2
3.
a. Apply the first law of thermodynamic for the system of two gases in the cylinder:

$$
\begin{equation*}
\delta q=d U+\delta A \tag{3}
\end{equation*}
$$

In an element of process in which the variations of temperature and volume are respectively $\mathrm{d} T$ and $\mathrm{d} V$:

$$
\begin{equation*}
\delta q=0 \quad ; \quad \mathrm{d} U=\left(C_{\mathrm{V} 1}+C_{\mathrm{V} 2}\right) \mathrm{d} T=\left(\frac{R}{\gamma_{1}-1}+\frac{R}{\gamma_{2}-1}\right) \mathrm{d} T \quad ; \quad \delta A=p \cdot \mathrm{~d} V \tag{4}
\end{equation*}
$$

On the other hand: $\quad p V=R T$
One can deduce the differential equation for the process:

$$
\left(\frac{R}{\gamma_{1}-1}+\frac{R}{\gamma_{2}-1}\right) \mathrm{d} T+p . \mathrm{d} V=0
$$

or

$$
\begin{equation*}
\frac{d T}{T}+\frac{\left(\gamma_{1}-1\right)\left(\gamma_{2}-2\right)}{\gamma_{1}+\gamma_{2}-2} \frac{d V}{V}=0 \tag{5}
\end{equation*}
$$

By putting

$$
\begin{equation*}
K=\frac{\left(\gamma_{1}-1\right)\left(\gamma_{2}-1\right)}{\gamma_{1}+\gamma_{2}-2}=\frac{2}{11} \tag{6}
\end{equation*}
$$

after integrating (5), we have:

$$
\begin{equation*}
T V^{K}=\text { const. } \tag{7}
\end{equation*}
$$

The condensing temperature of water vapor under the pressure 0.5 atm . is also the boiling temperature T ' of water under the same pressure. By using the given approximate formula, we obtain

$$
\frac{1}{T^{\prime}}-\frac{1}{T_{0}}=\left(-\frac{R}{\mu L}\right) \ln \frac{p}{p_{0}}
$$

- If we consider p approximatively constant (with relative deviation about 20/373 $\approx 5 \%$) T^{\prime} can be easily found, and

$$
T^{\prime}=354 \mathrm{~K}
$$

The volume V^{\prime} of the right compartment at temperature T^{\prime} can be calculated as follows:

$$
\begin{aligned}
V^{\prime}=V_{0}\left(\frac{T_{1}}{T^{\prime}}\right)^{\frac{1}{K}}= & V_{0}\left(\frac{373}{354}\right)^{\frac{11}{2}}=1.33 V_{0} \cong 1.3 V_{0} \\
& =81.6 \mathrm{dm}^{3}=0.0816 \mathrm{~m}^{3} \cong 0.08 \mathrm{~m}^{3}
\end{aligned}
$$

b.The work done by the gas in the expansion is:

$$
\begin{aligned}
A=-\Delta U=\left(C_{V I}+C_{V 2}\right)\left(T_{0^{-}} T^{\prime}\right) & =\left(\frac{R}{\gamma_{1}-1}+\frac{R}{\gamma_{2}-2}\right)(373-354)= \\
& =\left(\frac{5}{2} R+\frac{6}{2} R\right) \times 19=868 \mathrm{~J} \cong 9 \times 10^{2} \mathrm{~J}
\end{aligned}
$$

- If we consider the dependence of water vapor pressure p on temperature T^{\prime}, we must resolve the transcendental equation

$$
\frac{1}{T^{\prime}}-\frac{1}{T_{0}}=\left(-\frac{R}{\mu L}\right) \ln \frac{1}{2} \frac{T^{\prime}}{T_{0}}=\frac{R}{\mu L} \ln 2-\frac{R}{\mu L} \ln \frac{T^{\prime}}{T_{0}}
$$

This equation can be reduced to a numerical one:

$$
\frac{1}{T^{\prime}}-\frac{1}{373}=1.422 \times 10^{-4}-2.052 \times 10^{-4} \ln \frac{T^{\prime}}{373}
$$

By giving T^{\prime} different values $354,353,352$ and choosing the one which satisfies this equation, we find the approximate solution :

$$
T^{\prime}=353 \mathrm{~K}
$$

With this value of temperature, the volume of the right compartment is :

$$
V^{\prime}=V_{0}\left(\frac{373}{353}\right)^{\frac{11}{2}}=1.35 V_{0}=0.082 \mathrm{~m}^{3} \cong 0.08 \mathrm{~m}^{3}
$$

b. The work done by the gas in the expansion is:

$$
A=\frac{11}{2} R \times 20=914 \mathrm{~J} \cong 9 \times 10^{2} \mathrm{~J}
$$

