

Questions and Solutions

FINAL VERSION

Question 3 LIGHT DEFLECTION BY A MOVING MIRROR

Reflection of light by a relativistically moving mirror is not theoretically new. Einstein discussed the possibility or worked out the process using the Lorentz transformation to get the reflection formula due to a mirror moving with a velocity \vec{v} . This formula, however, could also be derived by using a relatively simpler method. Consider the reflection process as shown in Fig. 3.1, where a plane mirror M moves with a velocity $\vec{v} = v \hat{e}_x$ (where \hat{e}_x is a unit vector in the *x*-direction) observed from the lab frame F. The mirror forms an angle ϕ with respect to the velocity (note that $\phi \leq 90^{\circ}$, see figure 3.1). The plane of the mirror has **n** as its normal. The light beam has an incident angle α and reflection angle β which are the angles between \bar{n} and the incident beam 1 and reflection beam 1', respectively in the laboratory frame F. It can be shown that,

Figure 3.1. Reflection of light by a relativistically moving mirror

Questions and Solutions

FINAL VERSION

3A. Einstein's Mirror (2.5 points)

About a century ago Einstein derived the law of reflection of an electromagnetic wave by a mirror moving with a constant velocity $\vec{v} = -v \hat{e}_x$ (see Fig. 3.2). By applying the Lorentz transformation to the result obtained in the rest frame of the mirror, Einstein found that:

$$\cos\beta = \frac{\left(1 + \left(\frac{v}{c}\right)^2\right)\cos\alpha - 2\frac{v}{c}}{1 - 2\frac{v}{c}\cos\alpha + \left(\frac{v}{c}\right)^2}$$
(2)

Derive this formula using Equation (1) without Lorentz transformation!

Figure 3.2. Einstein mirror moving to the left with a velocity v.

3B. Frequency Shift (2 points)

In the same situation as in 3A, if the incident light is a monochromatic beam hitting M with a frequency f, find the new frequency f' after it is reflected from the surface of the moving mirror. If $\alpha = 30^{\circ}$ and v = 0.6 c in figure 3.2, find frequency shift Δf in percentage of f.

Questions and Solutions

FINAL VERSION

3C. Moving Mirror Equation (5.5 Points)

Figure 3.3 shows the positions of the mirror at time t_0 and t. Since the observer is moving to the left, the mirror moves relatively to the right. Light beam 1 falls on point a at t_0 and is reflected as beam 1'. Light beam 2 falls on point d at t and is reflected as beam 2'. Therefore, \overline{ab} is the wave front of the incoming light at time t_0 . The atoms at point are disturbed by the incident wave front \overline{ab} and begin to radiate a wavelet. The disturbance due to the wave front \overline{ab} stops at time t when the wavefront strikes point d.

By referring to figure 3.3 for light wave propagation or using other methods, derive equation (1).

Questions and Solutions

FINAL VERSION

Solution:

a) EINSTEIN'S MIRROR

By taking $\phi = \pi/2$ and replacing v with -v in Equation (1) we obtain

$$\sin \alpha - \sin \beta = -\frac{v}{c} \sin (\alpha + \beta)$$
(3)

This equation can also be written in the form of

$$\left(1 + \frac{v}{c}\cos\beta\right)\sin\alpha = \left(1 - \frac{v}{c}\cos\alpha\right)\sin\beta$$
(4)

The square of this equation can be written in terms of a squared equation of $\cos\beta$, as follows,

$$\left(1 - 2\frac{v}{c}\cos\alpha + \frac{v^2}{c^2}\right)\cos^2\beta + 2\frac{v}{c}\left(1 - \cos^2\alpha\right)\cos\beta + 2\frac{v}{c}\cos\alpha - \left(1 + \frac{v^2}{c^2}\right)\cos^2\alpha = 0$$
(5)

which has two solutions,

$$\left(\cos\beta\right)_{l} = \frac{2\frac{v}{c}\cos^{2}\alpha - \left(1 + \frac{v^{2}}{c^{2}}\right)\cos\alpha}{1 - 2\frac{v}{c}\cos\alpha + \frac{v^{2}}{c^{2}}}$$
(6)

and

$$(\cos\beta)_{2} = \frac{-2\frac{v}{c} + \left(1 + \frac{v^{2}}{c^{2}}\right)\cos\alpha}{1 - 2\frac{v}{c}\cos\alpha + \frac{v^{2}}{c^{2}}}$$
(7)

However, if the mirror is at rest (v = 0) then $\cos \alpha = \cos \beta$; therefore the proper solution is

$$\cos \beta_{2} = \frac{-2\frac{v}{c} + \left(1 + \frac{v^{2}}{c^{2}}\right) \cos \alpha}{1 - 2\frac{v}{c} \cos \alpha + \frac{v^{2}}{c^{2}}}$$
(8)

Questions and Solutions

FINAL VERSION

b) FREQUENCY SHIFT

The reflection phenomenon can be considered as a collision of the mirror with a beam of photons each carrying an incident and reflected momentum of magnitude

$$p_f = hf / c \text{ and } p_f' = hf' / c, \qquad (9)$$

The conservation of linear momentum during its reflection from the mirror for the component parallel to the mirror appears as

$$p_f \sin \alpha = p_f ' \sin \beta \text{ or } f ' \sin \beta = f ' \frac{(1 - \frac{v^2}{c^2}) \sin \alpha}{(1 + \frac{v^2}{c^2}) - 2\frac{v}{c} \cos \alpha} = f \sin \alpha$$
(10)

Thus

$$f' = \frac{(1 + \frac{v^2}{c^2}) - 2\frac{v}{c}\cos\alpha}{(1 - \frac{v^2}{c^2})}f$$
(11)

For $\alpha = 30^{\circ}$ and v = 0.6 c,

$$\cos \alpha = \frac{1}{2}\sqrt{3}, \ 1 - \frac{v^2}{c^2} = 0.64, \ 1 + \frac{v^2}{c^2} = 1.36$$
 (12)

so that

$$\frac{f'}{f} = \frac{1.36 - 0.6\sqrt{3}}{0.64} = 0.5$$
(13)

Thus, there is a decrease of frequency by 50% due to reflection by the moving mirror.

Questions and Solutions

FINAL VERSION

c) RELATIVISTICALLY MOVING MIRROR EQUATION

Figure 3.3 shows the positions of the mirror at time t_0 and t. Since the observer is moving to the left, system is moving relatively to the right. Light beam 1 falls on point a at t_0 and is reflected as beam 1'. Light beam 2 falls on point d at t and is reflected as beam 2'. Therefore, \overline{ab} is the wave front of the incoming light at time t_0 . The atoms at point are disturbed by the incident wave front \overline{ab} and begin to radiate a wavelet. The disturbance due to the wave front \overline{ab} stops at time t when the wavefront strikes point d. As a consequence

$$ac = bd = c(t - t_0). \tag{14}$$

From this figure we also have $\overline{ed} = \overline{ag}$, and

$$\sin \alpha = \frac{\overline{bd} + \overline{dg}}{\overline{ag}} , \qquad \sin \beta = \frac{\overline{ac} - \overline{af}}{\overline{ag} - \overline{ef}} . \tag{15}$$

Figure 3.4 displays the beam path 1 in more detail. From this figure it is easy to show that

$$\overline{dg} = \overline{ae} = \frac{ao}{\cos\alpha} = \frac{v(t-t_0)\sin\phi}{\cos\alpha}$$
(16)

and

$$\overline{af} = \frac{\overline{ao}}{\cos\beta} = \frac{v(t-t_0)\sin\phi}{\cos\beta}$$
(17)

Questions and Solutions

FINAL VERSION

From the triangles *aeo* and *afo* we have $\overline{eo} = \overline{ao} \tan \alpha$ and $\overline{of} = \overline{ao} \tan \beta$. Since $\overline{ef} = \overline{eo} + of$, then

$$\overline{ef} = v(t - t_0)\sin\phi(\tan\alpha + \tan\beta)$$
(18)

By substituting Equations (14), (16), (17), and (18) into Equation (15) we obtain

$$\sin \alpha = \frac{c + v \frac{\sin \phi}{\cos \alpha}}{\frac{\overline{ag}}{t - t_0}}$$
(19)

and

$$\sin\beta = \frac{c - v \frac{\sin\phi}{\cos\beta}}{\frac{\overline{ag}}{t - t_0} - v \sin\phi (\tan\alpha + \tan\beta)}$$
(20)

Eliminating $\overline{ag}/(t-t_0)$ from the two Equations above leads to

Questions and Solutions **FINAL VERSION** $v\sin\phi(\tan\alpha + \tan\beta) = c\left(\frac{1}{\sin\alpha} - \frac{1}{\sin\beta}\right) + v\sin\phi\left(\frac{1}{\sin\alpha\cos\alpha} + \frac{1}{\sin\beta\cos\beta}\right) \quad (21)$

By collecting the terms containing $v \sin \phi$ we obtain

$$\frac{v}{c}\sin\phi\left(\frac{\cos\alpha}{\sin\alpha} + \frac{\cos\beta}{\sin\beta}\right) = \frac{\sin\alpha - \sin\beta}{\sin\alpha\sin\beta}$$
(22)

or

$$\sin \alpha - \sin \beta = \frac{v}{c} \sin \phi \sin(\alpha + \beta)$$
(23)

Questions and Solutions

FINAL VERSION

[Marking Scheme]

THEORETICAL Question 3

Relativistic Mirror

A. (3.0)	0.5	Equation: $\sin \alpha - \sin \beta = -\frac{v}{c} \sin (\alpha + \beta)$
	0.25	Equation $\left(1 + \frac{v}{c}\cos\beta\right)\sin\alpha = \left(1 - \frac{v}{c}\cos\alpha\right)\sin\beta$
	0.5	$\left(1 - 2\frac{v}{c}\cos\alpha + \frac{v^2}{c^2}\right)\cos^2\beta + 2\frac{v}{c}\left(1 - \cos^2\alpha\right)\cos\beta + 2\frac{v}{c}\cos\alpha - \left(1 + \frac{v^2}{c^2}\right)\cos^2\alpha = 0$
	0.75	$\left(\cos\beta\right)_{1} = \frac{2\frac{\nu}{c}\cos^{2}\alpha - \left(1 + \frac{\nu^{2}}{c^{2}}\right)\cos\alpha}{1 - 2\frac{\nu}{c}\cos\alpha + \frac{\nu^{2}}{c^{2}}}$
		$(\cos\beta)_{2} = \frac{-2\frac{v}{c} + \left(1 + \frac{v^{2}}{c^{2}}\right)\cos\alpha}{1 - 2\frac{v}{c}\cos\alpha + \frac{v^{2}}{c^{2}}}$
	0.5	
	0.5	Recognize the mirror is at rest ($v = 0$) then $\cos \alpha = \cos \beta$
	0.5	Recognize the mirror is at rest ($v = 0$) then $\cos \alpha = \cos \beta$ $\cos \beta_2 = \frac{-2\frac{v}{c} + \left(1 + \frac{v^2}{c^2}\right)\cos \alpha}{1 - 2\frac{v}{c}\cos \alpha + \frac{v^2}{c^2}}$
B(2.0)	0.5	Recognize the mirror is at rest ($v = 0$) then $\cos \alpha = \cos \beta$ $\cos \beta_2 = \frac{-2\frac{v}{c} + \left(1 + \frac{v^2}{c^2}\right)\cos \alpha}{1 - 2\frac{v}{c}\cos \alpha + \frac{v^2}{c^2}}$ $p_f \sin \alpha = p_f ' \sin \beta$
B(2.0)	0.5 0.5 0.25 0.25	Recognize the mirror is at rest ($v = 0$) then $\cos \alpha = \cos \beta$ $\cos \beta_2 = \frac{-2\frac{v}{c} + \left(1 + \frac{v^2}{c^2}\right)\cos \alpha}{1 - 2\frac{v}{c}\cos \alpha + \frac{v^2}{c^2}}$ $p_f \sin \alpha = p_f ' \sin \beta$ Know how to calculate sin β
B(2.0)	0.5 0.5 0.25 0.25 0.25	Recognize the mirror is at rest ($v = 0$) then $\cos \alpha = \cos \beta$ $\cos \beta_2 = \frac{-2\frac{v}{c} + \left(1 + \frac{v^2}{c^2}\right)\cos \alpha}{1 - 2\frac{v}{c}\cos \alpha + \frac{v^2}{c^2}}$ $p_f \sin \alpha = p_f ' \sin \beta$ Know how to calculate $\sin \beta$ $p_f = hf / c$
B(2.0)	0.5 0.5 0.25 0.25 0.75	Recognize the mirror is at rest ($v = 0$) then $\cos \alpha = \cos \beta$ $\cos \beta_2 = \frac{-2\frac{v}{c} + \left(1 + \frac{v^2}{c^2}\right)\cos \alpha}{1 - 2\frac{v}{c}\cos \alpha + \frac{v^2}{c^2}}$ $p_f \sin \alpha = p_f '\sin \beta$ Know how to calculate $\sin \beta$ $p_f = hf / c$ $f' = \frac{(1 + \frac{v^2}{c^2}) - 2\frac{v}{c}\cos \alpha}{(1 - \frac{v^2}{c^2})} f$

Questions and Solutions

FINAL VERSION

For part C, if the students is not able to prove the equation maximum point is 2.5.

(5.0)	1.0	Equation $\overline{ef} = v(t - t_0) \sin \phi (\tan \alpha + \tan \beta)$
	1.0	$c + v \frac{\sin \phi}{\cos \phi}$
		$\sin \alpha = \frac{\cos \alpha}{\pi}$
		$\frac{dg}{t-t_0}$
	0.5	$\sin \phi$
		$\sin\beta = -\frac{c - v \frac{1}{\cos\beta}}{\cos\beta}$
		$\frac{ag}{t-t_0} - v\sin\phi \left(\tan\alpha + \tan\beta\right)$
	2.5	$\sin\alpha - \sin\beta = \frac{v}{c}\sin\phi\sin(\alpha + \beta)$

Propagation error can be considered but the maximum point is 2.5.