Question 3 LIGHT DEFLECTION BY A MOVING MIRROR

Reflection of light by a relativistically moving mirror is not theoretically new. Einstein discussed the possibility or worked out the process using the Lorentz transformation to get the reflection formula due to a mirror moving with a velocity \vec{v}. This formula, however, could also be derived by using a relatively simpler method. Consider the reflection process as shown in Fig. 3.1, where a plane mirror M moves with a velocity $\vec{v}=v \hat{e}_{x}$ (where \hat{e}_{x} is a unit vector in the x-direction) observed from the lab frame F. The mirror forms an angle ϕ with respect to the velocity (note that $\phi \leq 90^{\circ}$, see figure 3.1). The plane of the mirror has \mathbf{n} as its normal. The light beam has an incident angle α and reflection angle β which are the angles between \vec{n} and the incident beam 1 and reflection beam 1^{\prime}, respectively in the laboratory frame F. It can be shown that,

$$
\begin{equation*}
\sin \alpha-\sin \beta=\frac{v}{c} \sin \phi \sin (\alpha+\beta) \tag{1}
\end{equation*}
$$

Figure 3.1. Reflection of light by a relativistically moving mirror

3A. Einstein's Mirror (2.5 points)

About a century ago Einstein derived the law of reflection of an electromagnetic wave by a mirror moving with a constant velocity $\vec{v}=-v \hat{e}_{x}$ (see Fig. 3.2). By applying the Lorentz transformation to the result obtained in the rest frame of the mirror, Einstein found that:

$$
\begin{equation*}
\cos \beta=\frac{\left(1+\left(\frac{v}{c}\right)^{2}\right) \cos \alpha-2 \frac{v}{c}}{1-2 \frac{v}{c} \cos \alpha+\left(\frac{v}{c}\right)^{2}} \tag{2}
\end{equation*}
$$

Derive this formula using Equation (1) without Lorentz transformation!

Figure 3.2. Einstein mirror moving to the left with a velocity v.

3B. Frequency Shift (2 points)

In the same situation as in 3 A , if the incident light is a monochromatic beam hitting M with a frequency f, find the new frequency f^{\prime} after it is reflected from the surface of the moving mirror. If $\alpha=30^{\circ}$ and $v=0.6 c$ in figure 3.2, find frequency shift Δf in percentage of f.

3C. Moving Mirror Equation (5.5 Points)

Figure 3.3 shows the positions of the mirror at time t_{0} and t. Since the observer is moving to the left, the mirror moves relatively to the right. Light beam 1 falls on point a at t_{0} and is reflected as beam 1^{\prime}. Light beam 2 falls on point d at t and is reflected as beam 2^{\prime}. Therefore, $\overline{a b}$ is the wave front of the incoming light at time t_{0}. The atoms at point are disturbed by the incident wave front $\overline{a b}$ and begin to radiate a wavelet. The disturbance due to the wave front $\overline{a b}$ stops at time t when the wavefront strikes point d.

By referring to figure 3.3 for light wave propagation or using other methods, derive equation (1).

Solution:

a) EINSTEIN'S MIRROR

By taking $\phi=\pi / 2$ and replacing v with $-v$ in Equation (1) we obtain

$$
\begin{equation*}
\sin \alpha-\sin \beta=-\frac{v}{c} \sin (\alpha+\beta) \tag{3}
\end{equation*}
$$

This equation can also be written in the form of

$$
\begin{equation*}
\left(1+\frac{v}{c} \cos \beta\right) \sin \alpha=\left(1-\frac{v}{c} \cos \alpha\right) \sin \beta \tag{4}
\end{equation*}
$$

The square of this equation can be written in terms of a squared equation of $\cos \beta$, as follows,

$$
\begin{equation*}
\left(1-2 \frac{v}{c} \cos \alpha+\frac{v^{2}}{c^{2}}\right) \cos ^{2} \beta+2 \frac{v}{c}\left(1-\cos ^{2} \alpha\right) \cos \beta+2 \frac{v}{c} \cos \alpha-\left(1+\frac{v^{2}}{c^{2}}\right) \cos ^{2} \alpha=0 \tag{5}
\end{equation*}
$$

which has two solutions,

$$
\begin{equation*}
(\cos \beta)_{1}=\frac{2 \frac{v}{c} \cos ^{2} \alpha-\left(1+\frac{v^{2}}{c^{2}}\right) \cos \alpha}{1-2 \frac{v}{c} \cos \alpha+\frac{v^{2}}{c^{2}}} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
(\cos \beta)_{2}=\frac{-2 \frac{v}{c}+\left(1+\frac{v^{2}}{c^{2}}\right) \cos \alpha}{1-2 \frac{v}{c} \cos \alpha+\frac{v^{2}}{c^{2}}} \tag{7}
\end{equation*}
$$

However, if the mirror is at rest $(v=0)$ then $\cos \alpha=\cos \beta$; therefore the proper solution is

$$
\begin{equation*}
\cos \beta_{2}=\frac{-2 \frac{v}{c}+\left(1+\frac{v^{2}}{c^{2}}\right) \cos \alpha}{1-2 \frac{v}{c} \cos \alpha+\frac{v^{2}}{c^{2}}} \tag{8}
\end{equation*}
$$

b) FREQUENCY SHIFT

The reflection phenomenon can be considered as a collision of the mirror with a beam of photons each carrying an incident and reflected momentum of magnitude

$$
\begin{equation*}
p_{f}=h f / c \text { and } p_{f}^{\prime}=h f^{\prime} / c, \tag{9}
\end{equation*}
$$

The conservation of linear momentum during its reflection from the mirror for the component parallel to the mirror appears as

$$
\begin{equation*}
p_{f} \sin \alpha=p_{f} \sin \beta \text { or } f^{\prime} \sin \beta=f^{\prime} \frac{\left(1-\frac{v^{2}}{c^{2}}\right) \sin \alpha}{\left(1+\frac{v^{2}}{c^{2}}\right)-2 \frac{v}{c} \cos \alpha}=f \sin \alpha \tag{10}
\end{equation*}
$$

Thus

$$
\begin{equation*}
f^{\prime}=\frac{\left(1+\frac{v^{2}}{c^{2}}\right)-2 \frac{v}{c} \cos \alpha}{\left(1-\frac{v^{2}}{c^{2}}\right)} f \tag{11}
\end{equation*}
$$

For $\alpha=30^{\circ}$ and $v=0.6 c$,

$$
\begin{equation*}
\cos \alpha=\frac{1}{2} \sqrt{3}, 1-\frac{v^{2}}{c^{2}}=0.64,1+\frac{v^{2}}{c^{2}}=1.36 \tag{12}
\end{equation*}
$$

so that

$$
\begin{equation*}
\frac{f^{\prime}}{f}=\frac{1.36-0.6 \sqrt{3}}{0.64}=0.5 \tag{13}
\end{equation*}
$$

Thus, there is a decrease of frequency by 50% due to reflection by the moving mirror.

c) RELATIVISTICALLY MOVING MIRROR EQUATION

Figure 3.3 shows the positions of the mirror at time t_{0} and t. Since the observer is moving to the left, system is moving relatively to the right. Light beam 1 falls on point a at t_{0} and is reflected as beam 1^{\prime}. Light beam 2 falls on point d at t and is reflected as beam 2^{\prime}. Therefore, $\overline{a b}$ is the wave front of the incoming light at time t_{0}. The atoms at point are disturbed by the incident wave front $\overline{a b}$ and begin to radiate a wavelet. The disturbance due to the wave front $\overline{a b}$ stops at time t when the wavefront strikes point d. As a consequence

$$
\begin{equation*}
\overline{a c}=\overline{b d}=c\left(t-t_{0}\right) \tag{14}
\end{equation*}
$$

From this figure we also have $\overline{e d}=\overline{a g}$, and

$$
\begin{equation*}
\sin \alpha=\frac{\overline{b d}+\overline{d g}}{\overline{a g}}, \quad \sin \beta=\frac{\overline{a c}-\overline{a f}}{\overline{a g}-\overline{e f}} . \tag{15}
\end{equation*}
$$

Figure 3.4 displays the beam path 1 in more detail. From this figure it is easy to show that

$$
\begin{equation*}
\overline{d g}=\overline{a e}=\frac{\overline{a o}}{\cos \alpha}=\frac{v\left(t-t_{0}\right) \sin \phi}{\cos \alpha} \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
\overline{a f}=\frac{\overline{a o}}{\cos \beta}=\frac{v\left(t-t_{0}\right) \sin \phi}{\cos \beta} \tag{17}
\end{equation*}
$$

From the triangles aeo and afo we have $\overline{e o}=\overline{a o} \tan \alpha$ and $\overline{o f}=\overline{a o} \tan \beta$. Since $\overline{e f}=\overline{e o}+o f$, then

$$
\begin{equation*}
\overline{e f}=v\left(t-t_{0}\right) \sin \phi(\tan \alpha+\tan \beta) \tag{18}
\end{equation*}
$$

By substituting Equations (14), (16), (17), and (18) into Equation (15) we obtain

$$
\begin{equation*}
\sin \alpha=\frac{c+v \frac{\sin \phi}{\cos \alpha}}{\frac{\overline{a g}}{\overline{t-t_{0}}}} \tag{19}
\end{equation*}
$$

Figure 3.4.
and

$$
\begin{equation*}
\sin \beta=\frac{c-v \frac{\sin \phi}{\cos \beta}}{\frac{\overline{a g}}{t-t_{0}}-v \sin \phi(\tan \alpha+\tan \beta)} \tag{20}
\end{equation*}
$$

Eliminating $\overline{a g} /\left(t-t_{0}\right)$ from the two Equations above leads to

THEORETICAL COMPETITION

$$
\begin{equation*}
v \sin \phi(\tan \alpha+\tan \beta)=c\left(\frac{1}{\sin \alpha}-\frac{1}{\sin \beta}\right)+v \sin \phi\left(\frac{1}{\sin \alpha \cos \alpha}+\frac{1}{\sin \beta \cos \beta}\right) \tag{21}
\end{equation*}
$$

By collecting the terms containing $\nu \sin \phi$ we obtain

$$
\begin{equation*}
\frac{v}{c} \sin \phi\left(\frac{\cos \alpha}{\sin \alpha}+\frac{\cos \beta}{\sin \beta}\right)=\frac{\sin \alpha-\sin \beta}{\sin \alpha \sin \beta} \tag{22}
\end{equation*}
$$

or

$$
\begin{equation*}
\sin \alpha-\sin \beta=\frac{v}{c} \sin \phi \sin (\alpha+\beta) \tag{23}
\end{equation*}
$$

[Marking Scheme]
THEORETICAL Question 3

Relativistic Mirror

A. (3.0)	0.5	Equation: $\sin \alpha-\sin \beta=-\frac{v}{c} \sin (\alpha+\beta)$
	0.25	Equation $\left(1+\frac{v}{c} \cos \beta\right) \sin \alpha=\left(1-\frac{v}{c} \cos \alpha\right) \sin \beta$
	0.5	$\left(1-2 \frac{v}{c} \cos \alpha+\frac{v^{2}}{c^{2}}\right) \cos ^{2} \beta+2 \frac{v}{c}\left(1-\cos ^{2} \alpha\right) \cos \beta+2 \frac{v}{c} \cos \alpha-\left(1+\frac{v^{2}}{c^{2}}\right) \cos ^{2} \alpha=0$
	0.75	$\begin{aligned} & (\cos \beta)_{1}=\frac{2 \frac{v}{c} \cos ^{2} \alpha-\left(1+\frac{v^{2}}{c^{2}}\right) \cos \alpha}{1-2 \frac{v}{c} \cos \alpha+\frac{v^{2}}{c^{2}}} \\ & (\cos \beta)_{2}=\frac{-2 \frac{v}{c}+\left(1+\frac{v^{2}}{c^{2}}\right) \cos \alpha}{1-2 \frac{v}{c} \cos \alpha+\frac{v^{2}}{c^{2}}} \end{aligned}$
	0.5	Recognize the mirror is at rest ($v=0$) then $\cos \alpha=\cos \beta$
	0.5	$\cos \beta_{2}=\frac{-2 \frac{v}{c}+\left(1+\frac{v^{2}}{c^{2}}\right) \cos \alpha}{1-2 \frac{v}{c} \cos \alpha+\frac{v^{2}}{c^{2}}}$
B(2.0)	0.25	$p_{f} \sin \alpha=p_{f}{ }^{\prime} \sin \beta$
	$\begin{aligned} & 0.25 \\ & 0.25 \end{aligned}$	Know how to calculate $\sin \beta$ $p_{f}=h f / c$
	0.75	$f^{\prime}=\frac{\left(1+\frac{v^{2}}{c^{2}}\right)-2 \frac{v}{c} \cos \alpha}{\left(1-\frac{v^{2}}{c^{2}}\right)} f$
	0.5	$\frac{f^{\prime}}{f}=0.5$

For part \mathbf{C}, if the students is not able to prove the equation maximum point is $\mathbf{2 . 5}$.

(5.0)	1.0	Equation $\overline{e f}=v\left(t-t_{0}\right) \sin \phi(\tan \alpha+\tan \beta)$
	1.0	$\sin \alpha=\frac{c+v \frac{\sin \phi}{\cos \alpha}}{\frac{\overline{a g}}{t-t_{0}}}$
	0.5	$\sin \beta=\frac{c-v \frac{\sin \phi}{\cos \beta}}{\frac{\overline{a g}}{t-t_{0}}-v \sin \phi(\tan \alpha+\tan \beta)}$
	2.5	$\sin \alpha-\sin \beta=\frac{v}{c} \sin \phi \sin (\alpha+\beta)$

Propagation error can be considered but the maximum point is 2.5.

