Solutions:

S1. Consider a positive ion in the NaCl is surrounded by 26 neighbors (see Fig.1) . The first group of $\mathbf{6}$ nearest "central" neighbors have negative charges. They are located in distance \mathbf{r} from the considered ion and their contribution is attractive:

$$
V_{C 0^{\prime}}(r)=-6 \cdot k \frac{e^{2}}{r}
$$

The next group of "central" neighbors are $\mathbf{1 2}$ ions standing in distance $\sqrt{r^{2}+r^{2}}=\sqrt{2} r$. All they have positive charge and act repulsively

$$
V_{C 0 "}(r)=+\frac{12}{\sqrt{2}} \cdot k \frac{e^{2}}{r}
$$

Easily to guess that the "vertex" 8 negative ions standing in distance $\sqrt{r^{2}+r^{2}+r^{2}}=\sqrt{3} r$ produce an attractive potential:

$$
V_{C 0 " '}(r)=-\frac{8}{\sqrt{3}} \cdot k \frac{e^{2}}{r}
$$

Having done summation of these contributions, we obtain the zero-order Coulomb potential

$$
V_{C 0}(r)=V_{C 0^{\prime}}(r)+V_{C 0^{\prime \prime}}(r)+V_{C 0 " '}(r)=-\alpha_{0} \cdot k \frac{e^{2}}{r}
$$

where the approximate Madelung constant reads

$$
\alpha_{0}=6-\frac{12}{\sqrt{2}}+\frac{8}{\sqrt{3}} \approx 2.134
$$

S2. The net potential energy is the sum of attractive and repulsive exponential parts and reads

$$
V_{1}(r)=V_{\text {att }}+V_{r e p 1}=-\alpha \cdot k \frac{e^{2}}{r}+\lambda \cdot e^{-r / \rho}
$$

The condition for the equilibrium position $\mathrm{r}=r_{0}$ is

$$
F\left(r_{0}\right)=\frac{d V_{1}}{d r}\left(r_{0}\right)=-\alpha \cdot k \frac{e^{2}}{r_{0}^{2}}+\frac{\lambda}{\rho} e^{-r_{0} / \rho}=0
$$

Then, r_{0} may be defined from

$$
e^{-r_{0} / \rho}=\rho \cdot \frac{\alpha \cdot k \cdot e^{2}}{\lambda \cdot r_{0}^{2}}
$$

The equilibrium potential is:

$$
V_{1}\left(r_{0}\right)=-\alpha \cdot k \frac{e^{2}}{r_{0}}\left(1-\frac{\rho}{r_{0}}\right)
$$

S3. The dissociation energy corresponding to an ion (pair of atoms) is

$$
E_{\text {pair }}=\frac{E_{\text {dis }}}{N_{A}}=\frac{-764[\mathrm{~kJ} / \mathrm{mole}]}{6.022 \cdot 10^{23}[1 / \mathrm{mole}]} \approx-1.269 \cdot 10^{-18}[\mathrm{~J}]
$$

This energy will be spent to overcome the potential energy $E_{\text {pair }}=V_{1}\left(r_{0}\right)=-k \cdot \alpha \frac{e^{2}}{r_{0}}\left(1-\frac{\rho}{r_{0}}\right)$
Then,

$$
\frac{\rho}{r_{0}}=1+\frac{r_{0} E_{\text {pair }}}{k \alpha e^{2}} \approx 1-\frac{0.282 \cdot 10^{-9} \cdot 1.269 \cdot 10^{-18}}{9 \cdot 10^{9} \cdot 1.7476 \cdot\left(1.6 \cdot 10^{-19}\right)^{2}} \approx 0.112 \ldots
$$

Subsequently,

$$
\rho=0.112 \cdot r_{0} \approx 0.0316 \cdot 10^{-9}[\mathrm{~m}]
$$

This result is in good agreement with experimental data (see Table 2).

Crystal	$\mathrm{r}[\mathrm{nm}]$	$\rho[\mathrm{nm}]$	$\mathrm{E}_{\text {dis }}[\mathrm{kJ} /$ mole $]$
NaCl	0.282	0.032	-764.4
LiF	0.214	0.029	-1014.0
RbBr	0.345	0.034	-638.8

Table 2

Properties of Salt Crystals with the NaCl Structure [C.Kittel, "Introduction to Solid

State Physics", N.Y., Wiley (1976) p.92]

S4. The repulsive inverse-power part leads to the following net potential

$$
V_{2}(r)=V_{a t t}+V_{r e p 2}=-\alpha \cdot k \frac{e^{2}}{r}+\frac{b}{r^{n}}
$$

The equilibrium position $\mathrm{r}=r_{0}$ is defined from the zero-force condition

$$
F\left(r_{0}\right)=\frac{d V_{2}\left(r_{0}\right)}{d r}=-\alpha \cdot k \frac{e^{2}}{r_{0}^{2}}-\frac{n b}{r_{0}^{n+1}}=0
$$

The equation for r_{0} reads $r_{0}^{n-1}=\frac{b \cdot n}{\alpha \cdot k \cdot e^{2}}$
Then, $\quad V_{2}\left(r_{0}\right)=-\alpha \cdot k \frac{e^{2}}{r_{0}}\left(1-\frac{1}{n}\right)=V_{\text {Coulomb }}\left(r_{0}\right)+V_{\text {Pauli }}\left(r_{0}\right)$
Here, the first term corresponds to the Coulomb potential and the second - to the Pauli's.
S5. Comparing with previous result (see 3. and 4.) we express the Born exponent

$$
n=\frac{r_{0}}{\rho} \approx \frac{1}{0.112} \approx 9
$$

Theoretical Solution 2, $9^{\text {th }}$ Asian Physics Olympiad (Mongolia)
With $\mathrm{n}=9$ one finds that

$$
V_{\text {Coulomb } b}\left(r_{0}\right): V_{\text {Pauli }}\left(r_{0}\right)=1:(1 / 9)
$$

The Coulomb and the Pauli potentials contribute to the net potential with a proportion 9:1. This result agrees well with experimental data (see, Table 3).

Ion type	n
$N a^{+}, F^{+}$	7
$\mathrm{~K}^{+}, C u^{+}, C l^{-}$	9
$A u^{+}, I^{+}$	12

Table 3. The experimental fit for the Born exponent.
[CRC Handbook of Physics, 2004]

S6. The ionization energy of the $\mathbf{N a}$ atom is $\mathbf{+ 5 . 1 4} \mathbf{e V}$ while the electron affinity of the $\mathbf{C l}$ atom
is $\mathbf{- 3 . 6 1} \mathbf{~ e V}$. Subsequently, the electron transfer energy per atom is the half difference

$$
E_{\text {trans }} \approx \frac{+5.14-3.61}{2}[\mathrm{eV}] \approx+0.77[\mathrm{eV}]
$$

The total binding energy per atom in the NaCl crystal is:

$$
E_{\text {bind }}=\frac{E_{\text {pair }}}{2}+E_{\text {trans }}=\frac{-1.269 \cdot 10^{-18}[\mathrm{~J}]}{2}+1.232 \cdot 10^{-19}[\mathrm{~J}] \approx \frac{-0.511 \cdot 10^{-18}[\mathrm{~J}]}{1.602 \cdot 10^{-19}[\mathrm{~J} / \mathrm{VV}]} \approx-3.19[\mathrm{eV}]
$$

This estimate is in satisfactory agreement with the experimental result

$$
E_{\exp } \approx-3.28[\mathrm{eV}]
$$

Theoretical Problem 2, $\mathbf{9}^{\text {th }}$ Asian Physics Olympiad (Mongolia)
[Marking Scheme] Ionic Crystal, Yukawa-type Potential and Pauli Principle

Q	Item	Answer	Points
1.	Attractive Coulomb potential	$V_{C 0}(r)=V_{C 0^{\prime}}(r)+V_{C 0^{\prime \prime}}(r)+V_{C 0^{\prime \prime}}(r)=-\alpha_{0} \cdot k \frac{e^{2}}{r}$	0.5
	Madelung constant	$\alpha_{0}=6-\frac{12}{\sqrt{2}}+\frac{8}{\sqrt{3}} \approx 2.134$	1.0
2.	Equilibrium position	$F\left(r_{0}\right)=\frac{d V_{1}\left(r_{0}\right)}{d r}=-\alpha \cdot k \frac{e^{2}}{r_{0}^{2}}+\frac{\lambda}{\rho} e^{-r_{0} / \rho}=0$	0.5
	Net potential	$V_{1}\left(r_{0}\right)=-\alpha \cdot k \frac{e^{2}}{r_{0}}\left[1-\frac{\rho}{r_{0}}\right]$	1.0
3.	Pair energy	$E_{\text {pair }}=\frac{E_{\text {dis }}}{N_{A}}=\frac{-764[\mathrm{~kJ} / \mathrm{mole}]}{6.022 \cdot 10^{22}[1 / \mathrm{mole}]} \approx-1.269 \cdot 10^{-18}[\mathrm{~J}]$	0.2
	Equation for potential	$E_{\text {pair }}=V_{1}\left(r_{0}\right)=-k \alpha \frac{e^{2}}{r_{0}}\left[1-\frac{\rho}{r_{0}}\right]$	0.9
	Equation for range parameter	$\frac{\rho}{r_{0}}=1+\frac{r_{0} E_{\text {pair }}}{k \alpha e^{2}} \approx 1-\frac{0.282 \cdot 10^{-9} \cdot 1.269 \cdot 10^{-18}}{9 \cdot 10^{9} \cdot 1.7476 \cdot\left(1.6 \cdot 10^{-19}\right)^{2}} \approx 0.112 \ldots$	0.8
	Range parameter	$\rho=0.112 \cdot r_{0} \approx 0.0316 \cdot 10^{-9}[\mathrm{~m}]$	0.1
4.	Equilibrium position	$F\left(r_{0}\right)=\frac{d V_{2}\left(r_{0}\right)}{d r}=-\alpha \cdot k \frac{e^{2}}{r_{0}^{2}}-\frac{n b}{r_{0}^{n+1}}=0$	0.5
	Equation for r_{0}	$r_{0}^{n-1}=\frac{b \cdot n}{\alpha \cdot k \cdot e^{2}}$	0.5
	Net potential	$V_{2}\left(r_{0}\right)=-\alpha \cdot k \frac{e^{2}}{r_{0}}\left[1-\frac{1}{n}\right]$	1.0
5.	Born exponent	$n=\frac{r_{0}}{\rho} \approx \frac{1}{0.112} \approx 9$	1.2
	Proportions	$V_{\text {Coulomb }}\left(r_{0}\right): V_{\text {Pauli }}\left(r_{0}\right)=1:(1 / 9)$	0.3
6.	Electron transfer energy	$E_{\text {trans }} \approx \frac{+5.14-3.61}{2}[\mathrm{eV}] \approx+0.77[\mathrm{eV}]$	0.5
	the total binding energy	$E_{\text {bind }}=\frac{E_{\text {pair }}}{2}+E_{\text {trans }}=\frac{-1.269 \cdot 10^{-18}[\mathrm{~J}]}{2 \cdot 1.602 \cdot 10^{-19}[\mathrm{~J} / \mathrm{eV}]}+0.77[\mathrm{eV}] \simeq-3.19[\mathrm{e}$	1.0
total			10.0

