

Solutions:

S1. Consider a positive ion in the NaCl is surrounded by 26 neighbors (see Fig.1). The first group of **6** *nearest* "central" neighbors have negative charges. They are located in distance **r** from the considered ion and their contribution is attractive:

$$V_{C0'}(r) = -6 \cdot k \frac{e^2}{r}$$

The next group of "central" neighbors are 12 ions standing in distance $\sqrt{r^2 + r^2} = \sqrt{2}r$. All they have positive charge and act repulsively

$$V_{C0"}(r) = +\frac{12}{\sqrt{2}} \cdot k \frac{e^2}{r}$$

Easily to guess that the "vertex" 8 negative ions standing in distance $\sqrt{r^2 + r^2 + r^2} = \sqrt{3}r$ produce an attractive potential:

$$V_{C0^{m}}(r) = -\frac{8}{\sqrt{3}} \cdot k \frac{e^2}{r}$$

Having done summation of these contributions, we obtain the zero-order Coulomb potential

$$V_{C0}(r) = V_{C0'}(r) + V_{C0''}(r) + V_{C0''}(r) = -\alpha_0 \cdot k \frac{e^2}{r}$$

where the approximate Madelung constant reads

$$\alpha_0 = 6 - \frac{12}{\sqrt{2}} + \frac{8}{\sqrt{3}} \approx 2.134$$

S2. The net potential energy is the sum of attractive and repulsive exponential parts and reads

$$V_1(r) = V_{att} + V_{rep1} = -\alpha \cdot k \frac{e^2}{r} + \lambda \cdot e^{-r/\rho}$$

The condition for the equilibrium position $r=r_0$ is

$$F(r_0) = \frac{dV_1}{dr}(r_0) = -\alpha \cdot k \frac{e^2}{r_0^2} + \frac{\lambda}{\rho} e^{-r_0/\rho} = 0$$

Then, r_0 may be defined from

$$e^{-r_0/\rho} = \rho \cdot \frac{\alpha \cdot k \cdot e^2}{\lambda \cdot r_0^2}$$

The equilibrium potential is:

$$V_1(r_0) = -\alpha \cdot k \frac{e^2}{r_0} \left(1 - \frac{\rho}{r_0} \right)$$

S3. The dissociation energy corresponding to an ion (pair of atoms) is

$$E_{pair} = \frac{E_{dis}}{N_A} = \frac{-764 \left[\frac{kJ}{mole} \right]}{6.022 \cdot 10^{23} \left[\frac{1}{mole} \right]} \approx -1.269 \cdot 10^{-18} \left[J \right]$$

This energy will be spent to overcome the potential energy $E_{pair} = V_1(r_0) = -k \cdot \alpha \frac{e^2}{r_0} \left(1 - \frac{\rho}{r_0}\right)$

Then,

$$\frac{\rho}{r_0} = 1 + \frac{r_0 E_{pair}}{k\alpha e^2} \approx 1 - \frac{0.282 \cdot 10^{-9} \cdot 1.269 \cdot 10^{-18}}{9 \cdot 10^9 \cdot 1.7476 \cdot \left(1.6 \cdot 10^{-19}\right)^2} \approx 0.112..$$

Subsequently,

$$\rho = 0.112 \cdot r_0 \approx 0.0316 \cdot 10^{-9} [m]$$

This result is in good agreement with experimental data (see Table 2).

Crystal	r [nm]	ρ [nm]	$\mathrm{E}_{dis}\left[kJ / mole ight]$
NaCl	0.282	0.032	-764.4
LiF	0.214	0.029	-1014.0
RbBr	0.345	0.034	-638.8

Table 2 Properties of Salt Crystals with the NaCl Structure [C.Kittel, "Introduction to Solid State Physics", N.Y., Wiley (1976) p.92]

S4. The repulsive inverse-power part leads to the following net potential

$$V_2(r) = V_{att} + V_{rep2} = -\alpha \cdot k \frac{e^2}{r} + \frac{b}{r^n}$$

The equilibrium position $r=r_0$ is defined from the zero-force condition

$$F(r_0) = \frac{dV_2(r_0)}{dr} = -\alpha \cdot k \frac{e^2}{r_0^2} - \frac{nb}{r_0^{n+1}} = 0$$

The equation for r_0 reads $r_0^{n-1} = \frac{b \cdot n}{\alpha \cdot k \cdot e^2}$

Then,
$$V_2(r_0) = -\alpha \cdot k \frac{e^2}{r_0} \left(1 - \frac{1}{n}\right) = V_{Coulomb}(r_0) + V_{Pauli}(r_0)$$

Here, the first term corresponds to the Coulomb potential and the second – to the Pauli's.

S5. Comparing with previous result (see 3. and 4.) we express the Born exponent

$$n = \frac{r_0}{\rho} \approx \frac{1}{0.112} \approx 9$$

With n=9 one finds that

$$V_{Coulomb}(r_0): V_{Pauli}(r_0) = 1: (1/9)$$

The Coulomb and the Pauli potentials contribute to the net potential with a proportion 9:1. This result agrees well with experimental data (see, Table 3).

Ion type	n
Na^{+}, F^{+}	7
K^+, Cu^+, Cl^-	9
Au^+, I^+	12

Table 3. The experimental fit for the Born exponent. [CRC Handbook of Physics, 2004]

S6. The ionization energy of the **Na** atom is **+5.14 eV** while the electron affinity of the **Cl** atom

is -3.61 eV. Subsequently, the electron transfer energy per atom is the half difference

$$E_{trans} \approx \frac{+5.14 - 3.61}{2} [eV] \approx +0.77 [eV]$$

The total binding energy per atom in the NaCl crystal is:

$$E_{bind} = \frac{E_{pair}}{2} + E_{trans} = \frac{-1.269 \cdot 10^{-18} [\text{J}]}{2} + 1.232 \cdot 10^{-19} [\text{J}] \approx \frac{-0.511 \cdot 10^{-18} [\text{J}]}{1.602 \cdot 10^{-19} [\text{J/eV}]} \approx -3.19 [\text{eV}]$$

This estimate is in satisfactory agreement with the experimental result

$$E_{\rm exp} \approx -3.28 [\rm eV]$$

Theoretical Problem 2, 9th Asian Physics Olympiad (Mongolia)

[Marking Scheme] Ionic Crystal, Yukawa-type Potential and Pauli Principle

Q	Item	Answer	Points
1.	Attractive Coulomb potential $V_{C0}(r) = V_{C0'}(r) + V_{C0''}(r) + V_{C0'''}(r) = -\alpha_0 \cdot k \frac{e^2}{r}$		0.5
	Madelung constant	$\alpha_0 = 6 - \frac{12}{\sqrt{2}} + \frac{8}{\sqrt{3}} \approx 2.134$	1.0
2.	Equilibrium position	$F(r_0) = \frac{dV_1(r_0)}{dr} = -\alpha \cdot k \frac{e^2}{r_0^2} + \frac{\lambda}{\rho} e^{-r_0/\rho} = 0$	0.5
	Net potential	$V_1(r_0) = -\alpha \cdot k \frac{e^2}{r_0} \left[1 - \frac{\rho}{r_0} \right]$	1.0
3.	Pair energy	$E_{pair} = \frac{E_{dis}}{N_A} = \frac{-764 \ [kJ / mole]}{6.022 \cdot 10^{22} [1 / mole]} \approx -1.269 \cdot 10^{-18} [J]$	0.2
	Equation for potential	$E_{pair} = V_1(r_0) = -k\alpha \frac{e^2}{r_0} \left[1 - \frac{\rho}{r_0} \right]$	0.9
	Equation for range parameter	$\frac{\rho}{r_0} = 1 + \frac{r_0 E_{pair}}{k\alpha e^2} \approx 1 - \frac{0.282 \cdot 10^{-9} \cdot 1.269 \cdot 10^{-18}}{9 \cdot 10^9 \cdot 1.7476 \cdot \left(1.6 \cdot 10^{-19}\right)^2} \approx 0.112$	0.8
	Range parameter	$\rho = 0.112 \cdot r_0 \approx 0.0316 \cdot 10^{-9} [m]$	0.1
4.	Equilibrium position	$F(r_0) = \frac{dV_2(r_0)}{dr} = -\alpha \cdot k \frac{e^2}{r_0^2} - \frac{nb}{r_0^{n+1}} = 0$	0.5
	Equation for r_0	$r_0^{n-1} = \frac{b \cdot n}{\alpha \cdot k \cdot e^2}$	0.5
	Net potential	$V_2(r_0) = -\alpha \cdot k \frac{e^2}{r_0} \left[1 - \frac{1}{n} \right]$	1.0
5.	Born exponent	$n = \frac{r_0}{\rho} \approx \frac{1}{0.112} \approx 9$	1.2
	Proportions	$V_{Coulomb}(r_0): V_{Pauli}(r_0) = 1: (1/9)$	0.3
6.	Electron transfer energy	$E_{trans} \approx \frac{+5.14 - 3.61}{2} [eV] \approx +0.77 [eV]$	0.5
	the total binding energy	$E_{bind} = \frac{E_{pair}}{2} + E_{trans} = \frac{-1.269 \cdot 10^{-18} [\text{J}]}{2 \cdot 1.602 \cdot 10^{-19} [\text{J/eV}]} + 0.77 [\text{eV}] \simeq -3.19 [\text{eV}]$	1.0
total			10.0