The Leidenfrost Phenomenon

3.1) As given in the problem

$$
\begin{equation*}
\frac{d}{d z} v=\left(\frac{1}{\eta} \frac{d P}{d r}\right) \cdot z \tag{i}
\end{equation*}
$$

Integrating (i) with respect to z, we get

$$
\begin{equation*}
v(z)=\left(\frac{1}{2 \eta} \frac{d P}{d r}\right) \cdot z^{2}+C \tag{ii}
\end{equation*}
$$

3.2)

$$
\begin{array}{ll}
& v\left(\frac{b}{2}\right)=0=\left(\frac{1}{2 \eta} \frac{d P}{d r}\right) \cdot\left(\frac{b}{2}\right)^{2}+C \tag{iii}\\
\therefore & C=-\frac{b^{2}}{8 \eta} \frac{d P}{d r}
\end{array}
$$

Note that C is not a real constant; its value depends on $\frac{d P}{d r}$ which is a function of r.
3.3) Let Q be the volume rate of flow of the vapour through the cylindrical surface of $2 \pi r b$.

$$
\begin{align*}
& \delta Q= v(z) \cdot 2 \pi r \delta z \text { where from (ii) and (iii): } \tag{0.3point}\\
& v(z)=\left(\frac{1}{2 \eta} \frac{d P}{d r}\right) \cdot\left[z^{2}-\frac{b^{2}}{4}\right] \tag{iv}\\
& \therefore \quad \ldots \ldots \ldots \ldots \text { (iv) } \\
& Q=2 \int_{z=0}^{\frac{b}{2}} v(z) \cdot 2 \pi r d z=\left(\frac{2 \pi r}{\eta} \frac{d P}{d r}\right) \int_{z=0}^{\frac{b}{2}}\left[z^{2}-\frac{b^{2}}{4}\right] d z \tag{v}\\
& Q=-\frac{\pi r b^{3}}{6 \eta} \frac{d P}{d r}
\end{align*}
$$

Page 2 of 3
3.4) The total rate of heat flow from the area πr^{2} of the hot surface to the drop is $\frac{\pi r^{2} \mathcal{K} \Delta T}{b}$. We assume that this heat goes into vaporizing the drop.

Hence $\quad \rho Q \ell=\frac{\pi r^{2} \mathcal{K} \Delta T}{b}$ and using (v) we get

$$
\begin{equation*}
\frac{d P}{d r}=-\left(\frac{6 \eta \mathcal{K} \Delta T}{\rho_{\mathrm{v}} \ell b^{4}}\right) \cdot r \tag{vi}
\end{equation*}
$$

(0.4 point)

This gives $\quad P(r)=-\left(\frac{3 \eta \mathcal{K} \Delta T}{\rho_{\mathrm{v}} \ell b^{4}}\right) \cdot r^{2}+B$
(0.4 point)
where B is an arbitrary constant whose value can be found by applying the boundary condition $P(R)=P_{\mathrm{a}}$, the atmospheric pressure.

Hence $\quad B=P_{\mathrm{a}}+\left(\frac{3 \eta \mathcal{K} \Delta T}{\rho_{\mathrm{V}} \ell b^{4}}\right) \cdot R^{2}$
(0.4 point)
and

$$
\begin{equation*}
P(r)=P_{\mathrm{a}}+\left(\frac{3 \eta \mathcal{K} \Delta T}{\rho_{\mathrm{v}} \ell b^{4}}\right) \cdot\left(R^{2}-r^{2}\right) \tag{viii}
\end{equation*}
$$

(0.8 point)
3.5) The net force due to pressure is in the upward direction and of magnitude

$$
\begin{equation*}
f=\int_{r=0}^{R}\left[P(r)-P_{\mathrm{a}}\right] 2 \pi r d r=\frac{3 \pi \eta \mathcal{K} \Delta T R^{4}}{2 \rho_{\mathrm{V}} \ell b^{4}} \tag{ix}
\end{equation*}
$$

(1.0 point)

The weight of the drop is $\frac{2}{3} \pi R^{3} \rho_{0} g$, where ρ_{0} is the density of liquid.

$$
\begin{align*}
& \therefore \quad \frac{2}{3} \pi R^{3} \rho_{0} g=\frac{3 \pi \eta \mathcal{K} \Delta T R^{4}}{2 \rho_{\mathrm{V}} \ell b^{4}} \\
& \quad b=\left(\frac{9 \eta \mathcal{K} R \Delta T}{4 \rho_{0} \rho_{\mathrm{v}} \ell g}\right)^{\frac{1}{4}} \tag{x}
\end{align*}
$$

Note that $\quad \frac{3 \eta \mathcal{K} \Delta T}{\rho_{\mathrm{V}} \ell b^{4}}=\frac{4}{3} \frac{\rho_{0} g}{R}$ \qquad (1.0 point)
3.6) Use equations (xi) and (viii) to obtain

$$
\begin{align*}
& P(r)=P_{\mathrm{a}}+\left(\frac{4}{3} \frac{\rho_{0} g}{R}\right) \cdot\left(R^{2}-r^{2}\right) \\
& \frac{d}{d r} P(r)=-\left(\frac{8}{3} \frac{\rho_{0} g}{R}\right) \cdot r
\end{align*}
$$

(0.8 point)

Then use (v) to calculate the total mass-rate of vaporization $Q \rho_{\mathrm{v}}$ at $r=R$:

$$
\begin{align*}
Q \rho_{\mathrm{v}} & =\left(\frac{2 \pi b^{3} R}{12 \eta}\right)\left(\frac{8}{3} \frac{\rho_{0} g}{R}\right) R \rho_{\mathrm{v}}=\left(\frac{4 \pi \rho_{\mathrm{v}} \rho_{0} g R}{9 \eta}\right) b^{3} \\
& =\left(\frac{4 \pi \rho_{\mathrm{v}} \rho_{0} g R}{9 \eta}\right)\left(\frac{9 \eta \mathcal{K} R \Delta T}{4 \rho_{0} \rho_{\mathrm{v}} \ell g}\right)^{\frac{3}{4}} \\
& =\left(\frac{4 \pi^{4} \mathcal{K}^{3} \rho_{\mathrm{v}} \rho_{0} g(\Delta T)^{3}}{9 \eta \ell^{3}}\right)^{\frac{1}{4}} \cdot R^{\frac{7}{4}}=\beta R^{\frac{7}{4}} \ldots . . \text { (xiv) } \tag{1.2points}
\end{align*}
$$

3.7) The life-time (τ) of the drop, is to be found from

$$
\begin{align*}
& \frac{d}{d t}\left(\frac{2}{3} \pi R^{3} \rho_{0}\right)=-Q \rho_{\mathrm{V}}=-\beta R^{\frac{7}{4}} \\
& R^{\frac{1}{4}} \frac{d}{d t} R=-\frac{\beta}{2 \pi \rho_{0}} \\
& \int_{R}^{0} R^{\frac{1}{4}} d R=-\int_{0}^{\tau} \frac{\beta}{2 \pi \rho_{0}} d t \tag{1.0point}\\
& \tau=\frac{8 \pi \rho_{0}}{5 \beta} R^{\frac{5}{4}}=\frac{8}{5}\left(\frac{9 \eta \rho_{0}^{3} \ell^{3}}{4 \mathcal{K}^{3} \rho_{\mathrm{V}} g(\Delta T)^{3}}\right)^{\frac{1}{4}} \cdot R^{\frac{5}{4}} \tag{1.0point}
\end{align*}
$$

