| Part | Model Answer | Marks |
| :---: | :---: | :---: |
| A1 | The potential energy for $N=2$ is: $\begin{equation*} E_{\mathrm{p}}(\alpha)=M g \cdot y_{c \cdot \mathrm{~m} \cdot(0,0)} \times 4+M g \cdot \Delta y \times 2(0.5 \text { points }) \tag{1} \end{equation*}$ <br> where $\begin{equation*} y_{c \cdot \mathrm{~m} \cdot(0,0)}=-\frac{\sqrt{3} l}{3} \sin \left(\frac{\pi}{6}+\alpha\right) \quad(0.5 \text { points }) \tag{2} \end{equation*}$ <br> is the $y$ coordinate of center of mass of triangle $(0,0)$, and $\begin{align*} \Delta y & =y_{\mathrm{A}(0,1)}-y_{\mathrm{A}(0,0)} \\ & =-l\left[\sin \left(\frac{\pi}{3}+\alpha\right)+\sin \left(\frac{\pi}{3}-\alpha\right)\right] \\ & =-\sqrt{3} l \cos \alpha \text { ( } 0.5 \text { points) } \tag{3} \end{align*}$ <br> is the translational difference of two neighbouring triangles in $y$-direction. Solving Eqs. (1), (2) and (3), we obtain $\begin{equation*} E_{\mathrm{p}}(\alpha)=-\frac{2}{3} \operatorname{Mgl}(4 \sqrt{3} \cos \alpha+3 \sin \alpha)(0.5 \text { points }) \tag{4} \end{equation*}$ | 2 |
| A2 |  <br> At equilibrium, the potential energy reaches a minimum, which gives: $\begin{align*} \left.\frac{d E_{\mathrm{p}}(\alpha)}{d \alpha}\right\|_{\alpha=\alpha_{\mathrm{E}}} & =0(0.5 \text { points })  \tag{5}\\ \sqrt{3} \sin \alpha_{\mathrm{E}}+3 \cos \alpha_{\mathrm{E}} & =0 \tag{6} \end{align*}$ | 1 |


|  | or $\alpha_{\mathrm{E}}=\tan ^{-1} \frac{\sqrt{3}}{4}(0.5 \text { point }) \quad-\text { Eq. (7) }$ |  |
| :---: | :---: | :---: |
| A3 | If the total energy of the oscillation has the following form $\begin{equation*} E(\Delta \alpha, \Delta \dot{\alpha})=E_{\mathrm{p}}+E_{\mathrm{k}}=\frac{1}{2} K(\Delta \alpha)^{2}+\frac{1}{2} I(\Delta \dot{\alpha})^{2},(0.5 \text { points }) \tag{8} \end{equation*}$ <br> where $E_{\mathrm{p}}$ and $E_{\mathrm{k}}$ are the potential and kinetic energies of the system respectively, then the motion is a simple harmonic oscillation with angular frequency $\omega=\sqrt{K / I}$. Here $\Delta \alpha=$ $\alpha-\alpha_{\mathrm{E}}$. Under a small perturbation, the potential energy change is: $\begin{align*} \Delta E_{\mathrm{p}} & \left.\approx \frac{1}{2} \frac{d^{2} E_{\mathrm{p}}}{\mathrm{~d} \alpha^{2}}\right\|_{\alpha=\alpha_{\mathrm{E}}}(\Delta \alpha)^{2} \\ & =\left(\frac{1}{2}\right)\left(\frac{2}{3} M g l\right)\left(4 \sqrt{3} \cos \alpha_{\mathrm{E}}+3 \sin \alpha_{\mathrm{E}}\right)(\Delta \alpha)^{2} \\ & =\frac{\sqrt{57}}{3} M g l(\Delta \alpha)^{2}(1 \text { point }) \tag{9} \end{align*}$ <br> The total kinetic energy of the system includes the translational kinetic energy of every plate and the rotational kinetic energy of every plate relative to its center of mass $\begin{equation*} E_{\mathrm{k}}=\sum E_{\mathrm{k}}^{\text {trans }}+\sum E_{\mathrm{k}}^{\text {rot }} \tag{10} \end{equation*}$ <br> The rotational kinetic energy is $\begin{equation*} \sum E_{\mathrm{k}}^{\mathrm{rot}}=4 \times \frac{1}{2} \frac{M l^{2}}{12}(\Delta \dot{\alpha})^{2}=\frac{1}{6} M l^{2}(\Delta \dot{\alpha})^{2}(0.5 \text { points }) \tag{11} \end{equation*}$ <br> $E_{\mathrm{k}}^{\text {trans }}$ can be obtained by considering the motion of the center of mass of each triangle and setting $N=2$. $\begin{align*} & x_{\text {c.m. }(m, n)}=m(2 l \cos \alpha)+n(2 l \cos \alpha) \cos \frac{\pi}{3}+\frac{l}{\sqrt{3}} \cos \left(\alpha+\frac{\pi}{6}\right), \\ & y_{\text {c.m. }(m, n)}=-n(2 l \cos \alpha) \sin \frac{\pi}{3}-\frac{l}{\sqrt{3}} \sin \left(\alpha+\frac{\pi}{6}\right) . \quad(0.5 \text { point }) \tag{0.5point} \end{align*}$ <br> Differentiating and substituting $\sin \alpha=\frac{\sqrt{3}}{\sqrt{19}}, \cos \alpha=\frac{4}{\sqrt{19}}, \sin \left(\alpha+\frac{\pi}{6}\right)=\frac{7}{2 \sqrt{19}}, \cos \left(\alpha+\frac{\pi}{6}\right)=\frac{3 \sqrt{3}}{2 \sqrt{19}},$ | 5 |

$$
\begin{gathered}
\dot{x}_{\text {c.m. }(m, n)}=-\left(2 m+n+\frac{7}{6}\right) \frac{3}{\sqrt{57}} l \Delta \dot{\alpha}, \quad \dot{y}_{\text {c.m. }(m, n)}=\frac{3(2 n-1)}{2 \sqrt{19}} l \Delta \dot{\alpha} . \\
v_{\text {c.m. }(m, n)}^{2}=\dot{x}_{\text {c.m. }(m, n)}^{2}+\dot{y}_{\text {c.m. }(m, n)}^{2}=\frac{(12 m+6 n+7)^{2}+27}{228} l^{2}(\Delta \dot{\alpha})^{2}, \quad(1 \text { point }) \\
E_{\text {c.m. }, \mathrm{k}}^{\text {trans }}=\frac{M}{2}\left[v_{\mathrm{c} . \mathrm{m} .(0,0)}^{2}+v_{\text {c.m. }(0,1)}^{2}+v_{\text {c.m. }(1,0)}^{2}+v_{\text {c.m. }(1,1)}^{2}\right]=\frac{164}{57} M l^{2}(\Delta \dot{\alpha})^{2} . \\
E_{\mathrm{k}}^{\text {trans }}=E_{\text {c.m. }, \mathrm{k}}^{\text {trans }}+E_{\mathrm{k}}^{\text {rot }}=\frac{347}{114} M l^{2}(\Delta \dot{\alpha})^{2} . \quad(1 \text { point })
\end{gathered}
$$

Alternatively, another way to get $E_{k}^{\text {trans }}$ is based on the center of mass of the whole system:

$$
\begin{equation*}
E_{\mathrm{k}}=\sum E_{\mathrm{c} . \mathrm{m}, \mathrm{k}}^{\text {trans }}+\sum E_{\mathrm{r} . \mathrm{c}, \mathrm{k}}^{\mathrm{rot}}(0.5 \text { points }) \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
E_{\text {r.c., }}^{\text {trans }}=\frac{M}{2}\left[v_{\text {r.c. }(0,0)}^{2}+v_{\text {r.c. }(1,0)}^{2}+v_{\text {r.c. }(0,1)}^{2}+v_{\text {r.c. }(1,1)}^{2}\right] \tag{13}
\end{equation*}
$$

is the translational kinetic energy relative to the center of mass of the system and

$$
\begin{equation*}
E_{\mathrm{c} . \mathrm{m}, \mathrm{k}}^{\text {trans }}=\frac{4 M}{2} v_{\mathrm{c} . \mathrm{m} .}^{2} \tag{14}
\end{equation*}
$$

is the translational kinetic energy of the center of mass of the system.
The center of mass of each of the $2 \times 2=4$ triangles always form diamond shape with lateral length $2 l \cos \alpha$. The center of mass of the whole system is at the center of the diamond shape. Hence

$$
\begin{align*}
& v_{\text {r.c. }(0,0)}=v_{\text {r.c. }(1,1)}=\left.\frac{d(\sqrt{3} l \cos \alpha)}{d \alpha}\right|_{\alpha=\alpha_{\mathrm{E}}} \Delta \dot{\alpha} \\
& v_{\text {r.c. }(1,0)}=v_{\text {r.c. }(0,1)}=\left.\frac{d(l \cos \alpha)}{d \alpha}\right|_{\alpha=\alpha_{\mathrm{E}}} \Delta \dot{\alpha} \tag{15}
\end{align*}
$$

Substituting Eqs. (14) and (15) into Eq. (13), we obtain

$$
\begin{equation*}
E_{\mathrm{r} . \mathrm{c}, \mathrm{k}}^{\mathrm{trans}}=4 \sin \alpha_{\mathrm{E}}^{2} M l^{2}(\Delta \dot{\alpha})^{2} \tag{16}
\end{equation*}
$$

For $E_{\text {c.m. }, \mathrm{k}}^{\text {trans }}$,
is the velocity of the center-of-mass of the four triangular plates, with

$$
\begin{align*}
x_{\text {c.m. }} & =x_{\text {c.m. }(0,0)}+\frac{1}{2}\left(x_{\mathrm{B}(0,0)}+x_{\mathrm{A}(1,0)}\right) \\
& =\frac{\sqrt{3} l}{3} \cos \left(\frac{\pi}{6}+\alpha\right)+\frac{3}{2} l \cos \alpha  \tag{18}\\
y_{\text {c.m. }} & =y_{\text {c.m. }(0,0)}+\frac{1}{2} \Delta y \\
& =-\frac{\sqrt{3} l}{3} \sin \left(\frac{\pi}{6}+\alpha\right)-\frac{\sqrt{3}}{2} l \cos \alpha \tag{19}
\end{align*}
$$

Substituting Eqs. (17), (18) and (19) and into Eq. (14), we obtain

$$
\begin{equation*}
E_{\mathrm{c} . \mathrm{m}, \mathrm{k}}^{\text {trans }}=\left(\frac{2}{3}+10 \sin ^{2} \alpha_{E}\right) M l^{2}(\Delta \dot{\alpha})^{2}(0.5 \text { points }) \tag{20}
\end{equation*}
$$

Combining Eqs. (12), (16) and (20), we obtain

$$
\begin{align*}
E_{\mathrm{k}} & =E_{\mathrm{k}}^{\text {rot }}+E_{\mathrm{r} . \mathrm{c}, \mathrm{k}}^{\mathrm{trans}}+E_{\mathrm{c} . \mathrm{m}, \mathrm{k}}^{\text {trans }} \\
& =\left(\frac{5}{6}+14 \sin ^{2} \alpha_{E}\right) M l^{2}(\Delta \dot{\alpha})^{2} \\
& =\frac{347}{114} M l^{2}(\Delta \dot{\alpha})^{2} \quad(1.5 \text { points }) \tag{21}
\end{align*}
$$

According to Eqs. (8), (9) and (21),

$$
\begin{equation*}
f=\frac{1}{2 \pi} \sqrt{\frac{\frac{\sqrt{57}}{3} M g l}{\frac{347}{114} M l^{2}}}=\frac{1}{2 \pi} \sqrt{\frac{38 \sqrt{57}}{347} \frac{g}{l}} \text { (0.5 points) } \tag{22}
\end{equation*}
$$

[Note 1: 0.5 point should be deducted if there are numerical mistakes, but all steps are correct.

Note 2: A rough estimate of $f \sim \sqrt{\frac{g}{l}}$ can get 0.5 points out of 5 points.]

B1 For arbitrary $N$, the total potential energy

$$
\begin{equation*}
E_{\mathrm{p}}=\sum_{m, n=0}^{N-1} E_{\mathrm{p}}(m, n) \tag{23}
\end{equation*}
$$

where

$$
\begin{equation*}
E_{\mathrm{p}}(m, n)=\frac{1}{3} M g\left[y_{\mathrm{A}(m, n)}+y_{\mathrm{B}(m, n)}+y_{\mathrm{C}(m, n)}\right] \tag{24}
\end{equation*}
$$

(0.5 points for Eqs. (23) and (24))
and

$$
\begin{align*}
& y_{\mathrm{A}(m, n)}=-n l \sin \left(\frac{\pi}{3}-\alpha\right)-n l \sin \left(\frac{\pi}{3}+\alpha\right)=-\sqrt{3} n l \cos \alpha \\
& y_{\mathrm{B}(m, n)}=y_{\mathrm{A}(m, n)}-l \sin \alpha=-\sqrt{3} n l \cos \alpha-l \sin \alpha \\
& y_{\mathrm{C}(m, n)}=y_{\mathrm{A}(m, n)}-l \sin \left(\frac{\pi}{3}+\alpha\right)=-\sqrt{3} n l \cos \alpha-l \sin \left(\frac{\pi}{3}+\alpha\right) \tag{25}
\end{align*}
$$

( 0.5 points for all three correct coordinates)
Thus,

$$
\begin{equation*}
E_{\mathrm{p}}(m, n)=-\frac{1}{3} M g l\left[3 \sqrt{3} n \cos \alpha+\sin \alpha+\sin \left(\frac{\pi}{3}+\alpha\right)\right] \tag{26}
\end{equation*}
$$

and

$$
\begin{aligned}
E_{\mathrm{p}} & =\sum_{m, n=0}^{N-1} E_{\mathrm{p}}(m, n) \\
& =-\frac{1}{3} M g l \sum_{m, n=0}^{N-1}\left[3 \sqrt{3} n \cos \alpha+\sin \alpha+\sin \left(\frac{\pi}{3}+\alpha\right)\right](0.5 \text { points })-\text { Eq. (27) }
\end{aligned}
$$

Using the mathematical relations

$$
\sum_{m=0}^{N-1} 1=\sum_{n=0}^{N-1} 1=N
$$

and

$$
\begin{equation*}
\sum_{m=0}^{N-1} m=\sum_{n=0}^{N-1} n=\frac{N(N-1)}{2} \tag{28}
\end{equation*}
$$

Eq. (27) becomes

$$
\begin{aligned}
E_{\mathrm{p}} & =-\frac{1}{3} N^{2} M g l\left[\frac{3 \sqrt{3}(N-1) \cos \alpha}{2}+\sin \alpha+\sin \left(\frac{\pi}{3}+\alpha\right)\right] \\
\text { or } \quad & =-\frac{1}{3} N^{2} M g l\left[\frac{\sqrt{3}(3 N-2) \cos \alpha}{2}+\frac{3}{2} \sin \alpha\right] \text { (1 points) }
\end{aligned}
$$

- Eq. (29)

At equilibrium, $\frac{\mathrm{d} E_{\mathrm{p}}}{\mathrm{d} \alpha}=0$, therefore

$$
\begin{gather*}
-\frac{3 \sqrt{3}(N-1) \sin \alpha_{\mathrm{E}}^{\prime}}{2}+\cos \alpha_{\mathrm{E}}^{\prime}+\cos \left(\frac{\pi}{3}+\alpha_{\mathrm{E}}^{\prime}\right)=0  \tag{30}\\
\alpha_{\mathrm{E}}^{\prime}=\tan ^{-1}\left(\frac{\sqrt{3}}{3 N-2}\right)(0.5 \text { points }) \tag{31}
\end{gather*}
$$

[Remark: Increasing $\alpha$ lowers each triangle relative to its vertex $A$, but globally raises the system, i.e. the bottom tube is raised higher. When $N \rightarrow \infty$, the global displacement dominates, consequently $\alpha \rightarrow 0$.]

Under a small perturbation, the potential energy change, according to Eq. (29) is

$$
\begin{equation*}
\left.\Delta E_{\mathrm{p}} \approx \frac{1}{2} \frac{d^{2} E_{\mathrm{p}}}{\mathrm{~d} \alpha^{2}}\right|_{\alpha=\alpha_{\mathrm{E}}^{\prime}}(\Delta \alpha)^{2} \sim N^{3} \text { or } \gamma_{1}=3 \text { ( } 0.5 \text { points) } \tag{32}
\end{equation*}
$$

[Remark: There are $N^{2}$ triangles and the $y$ coordinate of the total center of mass is proportional to $N$, hence $E_{\mathrm{p}} \sim N^{3}$ and $\gamma_{1}=3$. Using this argument to derive the correct $\gamma_{1}$ can also get 0.5 points.]

The kinetic energy of a triangle includes the translational energy of its center of mass and the rotational energy about its center of mass. Hence the total kinetic energy of the $N^{2}$ triangles is

$$
\begin{equation*}
E_{\mathrm{k}}=\sum_{m, n} E_{\text {c. } \mathrm{m} .(m, n)}+\sum_{m, n} E_{\text {r.c. }(m, n)} \tag{33}
\end{equation*}
$$

where

$$
\begin{equation*}
E_{\text {r.c. }(m, n)}=\frac{1}{2} \frac{M l^{2}}{12}(\Delta \dot{\alpha})^{2}=\frac{1}{24} M l^{2}(\Delta \dot{\alpha})^{2} \sim 1 \tag{34}
\end{equation*}
$$

and

$$
\begin{align*}
E_{\text {c.m. }(m, n)} & =\frac{M}{2} v_{\text {c.m. }(m, n)}^{2} \\
& =\frac{M(\Delta \dot{\alpha})^{2}}{2}\left[\left(\frac{\mathrm{~d} x_{c . \mathrm{c} \cdot(m, n)}}{\mathrm{d} \alpha}\right)^{2}+\left(\frac{\mathrm{d} y_{\mathrm{cm} .(m, n)}}{\mathrm{d} \alpha}\right)^{2}\right]_{\alpha=\alpha_{\mathrm{E}}^{\prime}} \quad(0.5 \text { points }) \tag{35}
\end{align*}
$$

Since

$$
\begin{aligned}
x_{\mathrm{c.m} .(m, n)} & =x_{\mathrm{A}(m, n)}+\frac{\sqrt{3} l}{3} \cos \left(\frac{\pi}{6}+\alpha\right) \\
& =(2 m+n) l \cos \alpha+\frac{l}{2} \cos \alpha-\frac{\sqrt{3} l}{6} \sin \alpha
\end{aligned}
$$

and

$$
\begin{align*}
y_{\text {c.m. }(m, n)} & =y_{\mathrm{A}(m, n)}+\frac{\sqrt{3} l}{3} \sin \left(\frac{\pi}{6}+\alpha\right) \\
& =\sqrt{3} n l \cos \alpha+\frac{\sqrt{3} l}{6} \cos \alpha+\frac{l}{2} \sin \alpha \tag{36}
\end{align*}
$$

(0.5 points for correct $x$ and $y$ )

$$
\begin{aligned}
& \frac{\mathrm{d} x_{\text {c.m. }(m, n)}}{\mathrm{d} \alpha}=\left[-(2 m+n) \sin \alpha-\frac{1}{2} \sin \alpha-\frac{\sqrt{3}}{6} \cos \alpha\right] l \\
& \frac{\mathrm{~d} y_{\text {c.m. }(m, n)}}{\mathrm{d} \alpha}=\left[-\sqrt{3} n \sin \alpha-\frac{\sqrt{3}}{6} \sin \alpha+\frac{1}{2} \cos \alpha\right] l
\end{aligned}
$$

we have

$$
E_{\text {c.m. }(m, n)}=\frac{1}{2} M l^{2}(\Delta \dot{\alpha})^{2}\left[\begin{array}{c}
\left(4 m^{2}+4 n^{2}+4 m n+2 m+2 n\right) \sin ^{2} \alpha_{\mathrm{E}}^{\prime}  \tag{37}\\
+\frac{2 \sqrt{3}}{3}(m-n) \sin \alpha_{\mathrm{E}}^{\prime} \cos \alpha_{E}^{\prime}+\frac{1}{3}
\end{array}\right]
$$

Since $\alpha_{\mathrm{E}}^{\prime} \sim \frac{1}{N}$ in Eq. (31), we have

$$
\begin{equation*}
E_{\text {c.m. }(m, n)}=A \cdot N^{2} \cdot \frac{1}{N^{2}}+B \cdot N \cdot \frac{1}{N}+C \sim 1(0.5 \text { points }) \tag{38}
\end{equation*}
$$

According to Eqs. (33), (34) and (38), we have

$$
\begin{gather*}
E_{\mathrm{k}}=\sum_{m, n} E_{\text {c.m. }(m, n)}+\sum_{m, n} E_{\text {r.c. }(m, n)} \sim N \times N \times 1 \sim N^{2} \\
\text { or } \gamma_{2}=2(0.5 \text { points }) \tag{39}
\end{gather*}
$$

|  | [Remarks: $E_{\mathrm{k}} \sim N^{2}$ because there are $N^{2}$ triangles, each contribute $E_{\text {r.c. }}(m, n) \sim 1$ (relative-to-center-of-mass kinetic energy) and $E_{\text {c.m. }}(m, n) \sim 1$ (center-of-mass kinetic energy).] <br> Note that $E_{\text {r.c. }}(m, n) \sim 1$ is true for arbitrary $\alpha$ while $E_{\text {c.m. }}(m, n) \sim 1$ is only true for the special case of $\alpha_{\mathrm{E}}^{\prime} \rightarrow 0$ or $N \rightarrow \infty$. <br> Therefore $\begin{gather*} f_{\mathrm{E}}^{\prime} \sim \sqrt{\frac{E_{\mathrm{p}}}{E_{\mathrm{k}}}} \sim \sqrt{N} \\ \text { or } \gamma_{3}=0.5 \quad(0.5 \text { points }) \tag{40} \end{gather*}$ |  |
| :---: | :---: | :---: |
| C1 | The minimum force should act on the farthest triangle ( $N-1, N-1$ ), whose motion can be decomposed into the motion of the center of mass and the rotation around the center of mass: $\vec{v}=\vec{v}_{\text {c.m. }}+\vec{v}_{\text {rot }}$. As shown in the figure, $\vec{v}_{\text {rot }}$ of vertex C makes the smallest angle relative to the direction of $\vec{v}_{\text {c.m. }}$ near $\alpha_{\mathrm{m}} \equiv \pi / 3$. Hence its displacement is the largest and its corresponding force is minimum, i.e the minimum force should act on vertex $\mathrm{C}(N-1$, $N-1)$. (1 point) <br> [Remarks: A rigorous calculation is given in Appendix 3.] | 1 |

C2
At $\alpha=\alpha_{\mathrm{m}} \equiv \pi / 3$, a small change in $\alpha$ will change the potential energy by:

$$
\begin{align*}
\Delta E_{\mathrm{p}}\left(\alpha_{\mathrm{m}}\right) & =\left.\frac{d E_{\mathrm{p}}}{d \alpha}\right|_{\alpha=\alpha_{\mathrm{m}}} \Delta \alpha \\
& =\frac{1}{3} N^{2} M g l\left[\left(\frac{3 \sqrt{3} N}{2}-\sqrt{3}\right) \sin \alpha_{\mathrm{m}}-\frac{3}{2} \cos \alpha_{\mathrm{m}}\right] \Delta \alpha \\
& =\frac{3}{4}(N-1) N^{2} M g l \Delta \alpha \text { (1 point) } \tag{41}
\end{align*}
$$

The displacement of $C(m, n)$ point is

$$
\begin{aligned}
\Delta x_{\mathrm{C}(m, n)} & =-\left[(2 m+n) \sin \alpha_{\mathrm{m}}-\sin \left(\frac{\pi}{3}+\alpha_{\mathrm{m}}\right)\right] l \Delta \alpha \\
& =\frac{(2 m+n+1) \sqrt{3}}{2} l \Delta \alpha(0.5 \text { points }) \\
\Delta y_{\mathrm{C}(m, n)} & =-\left[\sqrt{3} n \sin \alpha_{\mathrm{m}}-\cos \left(\frac{\pi}{3}+\alpha_{\mathrm{m}}\right)\right] l \Delta \alpha \\
& =\frac{(3 n+1)}{2} l \Delta \alpha(0.5 \text { points })
\end{aligned}
$$

For $\mathrm{C}(N-1, N-1), \Delta r=\sqrt{(\Delta x)^{2}+(\Delta y)^{2}}=(3 N-2)(l \Delta \alpha) .(1$ point $)$
Hence

$$
\begin{equation*}
F_{\min }=\frac{\Delta E_{\mathrm{p}}\left(\alpha_{\mathrm{m}}\right)}{\Delta r_{\max }}=\frac{3(N-1) N^{2}}{4(3 N-2)} M g(1 \text { point }) \tag{42}
\end{equation*}
$$

and

$$
\begin{align*}
\theta_{F_{\min }} & =\tan ^{-1}\left[\frac{\Delta y_{\mathrm{C}(N-1, N-1)}}{\Delta x_{\mathrm{C}(N-1, N-1)}}\right]+\pi \\
& =-\tan ^{-1} \frac{\sqrt{3}}{3}+\pi=\frac{5 \pi}{6} \quad(1 \text { point }) \tag{43}
\end{align*}
$$

[Remarks: This $\theta_{F_{\text {min }}}$ is not perpendicular to the $C(N-1, N-1)-\mathbf{A}(0,0)$ direction because of the constraints of the tunes, e.g. $A(1,0), A(2,0), A(3,0), \cdots$, are also the holding points.]

## Appendix 1:

(a) Calculation of the exact $E_{\mathrm{p}}, E_{\mathrm{k}}$ and $f_{\mathrm{E}}^{\prime}$ in Parts (C), (D) and $€$ for arbitrary $N$

Under a small perturbation, the potential energy change is

$$
\begin{align*}
\Delta E_{\mathrm{p}} & \left.\approx \frac{1}{2} \frac{d^{2} E_{\mathrm{p}}}{d \alpha^{2}}\right|_{\alpha=\alpha_{E}^{\prime}}(\Delta \alpha)^{2} \\
& =\frac{1}{3} N^{2} M g l\left(\frac{3 \sqrt{3} N-2 \sqrt{3}}{2} \cos \alpha_{\mathrm{E}}^{\prime}+\frac{3}{2} \sin \alpha_{\mathrm{E}}^{\prime}\right) \frac{(\Delta \alpha)^{2}}{2} \\
& =\frac{\sqrt{3(3 N-2)^{2}+9}}{12} N^{2} \operatorname{Mgl}(\Delta \alpha)^{2} \tag{44}
\end{align*}
$$

The kinetic energy of a triangle includes the translational energy of its center of mass and the rotational energy around its center of mass. Hence the total kinetic energy of the $N^{2}$ triangles is

$$
\begin{equation*}
E_{\mathrm{k}}=\sum_{m, n} E_{\mathrm{c.m.} .(m, n)}+\sum_{m, n} E_{\mathrm{r} . \mathrm{c} .(m, n)} \tag{45}
\end{equation*}
$$

where

$$
\begin{equation*}
E_{\text {r.c. }(m, n)}=\frac{1}{2} \frac{M l^{2}}{12}(\Delta \dot{\alpha})^{2}=\frac{1}{24} M l^{2}(\Delta \dot{\alpha})^{2} \tag{46}
\end{equation*}
$$

and

$$
\begin{align*}
E_{\text {c.m. }(m, n)} & =\frac{M}{2} v_{\text {c.m. }(m, n)}^{2} \\
& =\frac{M(\Delta \dot{\alpha})^{2}}{2}\left[\left(\frac{\mathrm{~d} x_{\text {c.m. }(m, n)}}{\mathrm{d} \alpha}\right)^{2}+\left(\frac{\mathrm{d} y_{\mathrm{c.m} .(m, n)}}{\mathrm{d} \alpha}\right)^{2}\right]_{\alpha=\alpha_{\mathrm{E}}^{\prime}} \tag{47}
\end{align*}
$$

Since

$$
\begin{aligned}
x_{\text {c.m. }(m, n)} & =x_{\mathrm{A}(m, n)}+\frac{\sqrt{3} l}{3} \cos \left(\frac{\pi}{6}+\alpha\right) \\
& =(2 m+n) l \cos \alpha+\frac{l}{2} \cos \alpha-\frac{\sqrt{3} l}{6} \sin \alpha
\end{aligned}
$$

and

$$
y_{\text {c.m. }(m, n)}=y_{\mathrm{A}(m, n)}-\frac{\sqrt{3} l}{3} \sin \left(\frac{\pi}{6}+\alpha\right)
$$

Hence,

$$
\begin{aligned}
& \frac{\mathrm{d} x_{\text {c.m. }(m, n)}}{\mathrm{d} \alpha}=\left[-(2 m+n) \sin \alpha-\frac{1}{2} \sin \alpha-\frac{\sqrt{3}}{6} \cos \alpha\right] l \\
& \frac{\mathrm{~d} y_{\text {c.m. }(m, n)}}{\mathrm{d} \alpha}=\left[-\sqrt{3} n \sin \alpha+\frac{\sqrt{3}}{6} \sin \alpha-\frac{1}{2} \cos \alpha\right] l
\end{aligned}
$$

We have

$$
E_{\text {c.m. }(m, n)}=\frac{1}{2} M l^{2}(\Delta \dot{\alpha})^{2}\left[\begin{array}{c}
\left(4 m^{2}+4 n^{2}+4 m n+2 m+2 n\right) \sin ^{2} \alpha_{\mathrm{E}}^{\prime}  \tag{49}\\
+\frac{2 \sqrt{3}}{3}(m-n) \sin \alpha_{\mathrm{E}}^{\prime} \cos \alpha_{\mathrm{E}}^{\prime}+\frac{1}{3}
\end{array}\right]
$$

and

$$
\begin{align*}
E_{k} & =\sum_{m, n} E_{\text {c.m. }(m, n)}+\sum_{m, n} E_{\text {r.c. }(m, n)} \\
& =\left[\frac{1}{6}(11 N-1)(N-1) \sin ^{2} \alpha_{\mathrm{E}}^{\prime}+\frac{5}{24}\right] N^{2} M l^{2}(\Delta \dot{\alpha})^{2} \\
& =\left[\frac{(11 N-1)(N-1)}{2(3 N-2)^{2}+6}+\frac{5}{24}\right] N^{2} M l^{2}(\Delta \dot{\alpha})^{2} \tag{50}
\end{align*}
$$

With Eqs. (44) and (50), we have

$$
\begin{align*}
f_{\mathrm{E}}^{\prime} & =\frac{1}{2 \pi} \sqrt{\frac{\frac{\sqrt{3(3 N-2)^{2}+9}}{12} N^{2} M g l}{\left[\frac{(11 N-1)(N-1)}{2(3 N-2)^{2}+6}+\frac{5}{24}\right] N^{2} M l^{2}}} \\
& =\frac{1}{2 \pi} \sqrt{\frac{\left.\frac{2 \sqrt{3(3 N-2)^{2}+9}}{\left[\frac{12(11 N-1)(-1)}{(3 N-2)^{2}+3}+5\right.}\right]}{l}} \tag{51}
\end{align*}
$$

(b) Center of mass movement of the whole system

According to Eq. (48), we have

$$
x_{\text {c.m.(sys.) }}(\alpha)=\frac{\sum_{m, n} x_{\text {c.m. }(m, n)}}{N^{2}}
$$

$$
\begin{aligned}
& =\frac{\sum_{m, n}\left[(2 m+n) l \cos \alpha+\frac{l}{2} \cos \alpha-\frac{\sqrt{3} l}{6} \sin \alpha\right]}{N^{2}} \\
& =\left(\frac{3 N-2}{2}\right) l \cos \alpha-\frac{\sqrt{3} l}{6} \sin \alpha
\end{aligned}
$$

and

$$
\begin{align*}
y_{\text {c.m. }(m, n)}(\alpha) & =\frac{\sum_{m, n} y_{\text {c.m. }(m, n)}}{N^{2}} \\
& =-\frac{\sum_{m, n}\left[\sqrt{3} n l \cos \alpha+\frac{\sqrt{3} l}{6} \cos \alpha+\frac{l}{2} \sin \alpha\right]}{N^{2}} \\
& =-\left(\frac{3 N-2}{6}\right) \sqrt{3} l \cos \alpha-\frac{l \sin \alpha}{2} \tag{52}
\end{align*}
$$

Eq. (52) is the trajectory of the center of mass for the whole system, which is not a straight line.

## Appendix 2: Calculation of the moment of inertia of a triangular plate



An equilateral triangle with lateral length $l$ can be divided into four small equilateral triangles with lateral length $l / 2$. For the central small triangle centered at $c_{l}$, its moment of inertia is

$$
\begin{equation*}
I_{1}=\beta \frac{M}{4}\left(\frac{l}{2}\right)^{2} \tag{53}
\end{equation*}
$$

For the non-central small triangle centered atc $c_{2}, c_{2}^{\prime}$ and $c_{2}^{\prime \prime}$,

$$
\begin{equation*}
I_{2}=I_{1}+\frac{M}{4} d^{2} \tag{54}
\end{equation*}
$$

where $d=\sqrt{3} l / 6$ is the distance between the centers of triangles 1 and 2 . The second term is from the parallel-axis theorem. The moment of inertia of the whole triangle is the sum of the moment of inertia of the four sub-triangles:

$$
\begin{equation*}
\beta M l^{2}=4 \times \beta \frac{M}{4}\left(\frac{l}{2}\right)^{2}+3 \times \frac{M}{4} d^{2} \tag{55}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\beta=\frac{1}{12} \tag{56}
\end{equation*}
$$

Appendix 3: The minimum force corresponds to the maximum displacement of the exerting point of this force.

Consider the position of vertices A, B, C of a triangle ( $m, n$ ) :

$$
\begin{align*}
& x_{\mathrm{A}(m, n)}=(2 m+n) \cos \alpha_{\mathrm{m}} l \\
& y_{\mathrm{A}(m, n)}=-\sqrt{3} n \cos \alpha_{\mathrm{m}} l \\
& x_{\mathrm{B}(m, n)}=(2 m+n+1) \cos \alpha_{\mathrm{m}} l \\
& y_{\mathrm{B}(m, n)}=-\left(\sqrt{3} n \cos \alpha_{\mathrm{m}}+\sin \alpha_{\mathrm{m}}\right) l \\
& x_{\mathrm{C}(m, n)}=\left[(2 m+n) \cos \alpha_{\mathrm{m}}+\cos \left(\frac{\pi}{3}+\alpha_{\mathrm{m}}\right)\right] l \\
& y_{\mathrm{C}(m, n)}=-\left[\sqrt{3} n \cos \alpha_{\mathrm{m}}+\sin \left(\frac{\pi}{3}+\alpha_{\mathrm{m}}\right)\right] l \tag{57}
\end{align*}
$$

Taking derivatives on $\alpha$ on the above coordinates we get

$$
\begin{align*}
& \Delta x_{\mathrm{A}(m, n)}=-(2 m+n) \sin \alpha_{\mathrm{m}} l \Delta \alpha=-\frac{(2 m+n) \sqrt{3}}{2} l \Delta \alpha \\
& \Delta y_{\mathrm{A}(m, n)}=\sqrt{3} n \sin \alpha_{\mathrm{m}}(l \Delta \alpha)=\frac{3 n}{2} l \Delta \alpha \\
& \Delta x_{\mathrm{B}(m, n)}=-(2 m+n+1) \sin \alpha_{\mathrm{m}} l \Delta \alpha=-\frac{(2 m+n+1) \sqrt{3}}{2} l \Delta \alpha \\
& \Delta y_{\mathrm{B}(m, n)}=-\left(-\sqrt{3} n \sin \alpha_{\mathrm{m}}+\cos \alpha_{\mathrm{m}}\right) l \Delta \alpha=\frac{3 n-1}{2} l \Delta \alpha \\
& \Delta x_{\mathrm{C}(m, n)}=\left[-(2 m+n) \sin \alpha_{\mathrm{m}}-\sin \left(\frac{\pi}{3}+\alpha_{\mathrm{m}}\right)\right] l \Delta=-\frac{(2 m+n+1) \sqrt{3}}{2} l \Delta \alpha \\
& \Delta y_{\mathrm{C}(m, n)}=-\left[-\sqrt{3} n \sin \alpha_{\mathrm{m}}+\cos \left(\frac{\pi}{3}+\alpha_{\mathrm{m}}\right)\right] l \Delta \alpha=\frac{(3 n+1)}{2} l \Delta \alpha \quad-\mathrm{Eq} .(5 \tag{58}
\end{align*}
$$

For $\Delta r=\sqrt{(\Delta x)^{2}+(\Delta y)^{2}}$, we have

$$
\begin{align*}
\Delta r_{\mathrm{A}(m, n)} & =\sqrt{3 m^{2}+3 n^{2}+3 m n}(l \Delta \alpha) \\
\Delta r_{\mathrm{B}(m, n)} & =\sqrt{3 m^{2}+3 n^{2}+3 m n+3 m+1}(l \Delta \alpha) \\
\Delta r_{\mathrm{C}(m, n)} & =\sqrt{3 m^{2}+3 n^{2}+3 m n+3 m+3 n+1}(l \Delta \alpha) \tag{59}
\end{align*}
$$

Thus we find

$$
\begin{equation*}
\Delta r_{\mathrm{C}(m, n)}>\Delta r_{\mathrm{B}(m, n)}>\Delta r_{\mathrm{A}(m, n)} \tag{60}
\end{equation*}
$$

Therefore, we should choose point C of the triangle $(N-1, N-1)$ to obtain

$$
\begin{equation*}
\Delta r_{\max }=(3 N-2) l \Delta \alpha \tag{61}
\end{equation*}
$$

so that the force is minimal.

