
  

Page 1 of 15 

Marking Scheme – T1 

(Full Mark = 20) 

Part Model Answer Marks 

A1 

∆𝑦 = 𝑦A(0,1) − 𝑦A(0,0) 

The potential energy for N = 2 is: 

𝐸p(𝛼) = 𝑀𝑔 ∙ 𝑦c∙m.(0,0) × 4 + 𝑀𝑔 ∙ ∆𝑦 × 2  (0.5 points)         - Eq. (1)   

where 

𝑦c∙m.(0,0) = −
√3𝑙

3
sin (

𝜋

6
+ 𝛼)  (0.5 points)              - Eq. (2)   

is the y coordinate of center of mass of triangle (0,0), and 

= −𝑙 [sin (
𝜋

3
+ 𝛼) + sin (

𝜋

3
− 𝛼)]   

= −√3𝑙 cos 𝛼  (0.5 points)                                          - Eq. (3)   

is the translational difference of two neighbouring triangles in y-direction. Solving Eqs. 

(1), (2) and (3), we obtain 

𝐸p(𝛼) = −
2

3
𝑀𝑔𝑙(4√3 cos 𝛼 + 3 sin 𝛼)  (0.5 points)            - Eq. (4)   

2 

A2 

 

At equilibrium, the potential energy reaches a minimum, which gives: 

𝑑𝐸p(𝛼)

𝑑𝛼
|

𝛼=𝛼E

= 0  (0.5 points)                           - Eq. (5)   

√3 sin 𝛼E + 3 cos 𝛼E = 0                                               - Eq. (6) 

1 
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or 

𝛼E = tan−1 √3

4
   (0.5 point)                                   - Eq. (7)   

A3 

𝑥c.m.(𝑚,𝑛) = 𝑚(2𝑙 cos 𝛼) + 𝑛(2𝑙 cos 𝛼) cos
𝜋

3
+

𝑙

√3
cos (𝛼 +

𝜋

6
), 

If the total energy of the oscillation has the following form 

 

𝐸(∆𝛼, ∆�̇�) = 𝐸p + 𝐸k =
1

2
𝐾(∆𝛼)2 +

1

2
𝐼(∆�̇�)2 , (0.5 points)           - Eq. (8)   

where Ep and Ek are the potential and kinetic energies of the system respectively, then the 

motion is a simple harmonic oscillation with angular frequency 𝜔 = √𝐾/𝐼. Here  =

 − 𝛼E. Under a small perturbation, the potential energy change is: 

∆𝐸p ≈
1

2

𝑑2𝐸p

d𝛼2
|

𝛼=𝛼E

(∆𝛼)2 

= (
1

2
) (

2

3
𝑀𝑔𝑙) (4√3 cos 𝛼E + 3 sin 𝛼E)(∆𝛼)2 

=
√57

3
𝑀𝑔𝑙(∆𝛼)2 (1 point)                                                - Eq. (9) 

 

The total kinetic energy of the system includes the translational kinetic energy of every 

plate and the rotational kinetic energy of every plate relative to its center of mass 

 

𝐸k = ∑ 𝐸k
trans + ∑ 𝐸k

rot                                                      - Eq. (10) 

The rotational kinetic energy is 

∑ 𝐸k
rot = 4 ×

1

2

𝑀𝑙2

12
(∆�̇�)2 =

1

6
𝑀𝑙2(∆�̇�)2 (0.5 points)             - Eq. (11)   

𝐸k
transcan be obtained by considering the motion of the center of mass of each triangle and 

setting N = 2.  

𝑦c.m.(𝑚,𝑛) = −𝑛(2𝑙 cos 𝛼) sin
𝜋

3
−

𝑙

√3
sin (𝛼 +

𝜋

6
).        (0.5 point) 

Differentiating and substituting 

                  sin 𝛼 =
√3

√19
, cos 𝛼 =

4

√19
, sin (𝛼 +

𝜋

6
) =

7

2√19
, cos (𝛼 +

𝜋

6
) =

3√3

2√19
, 

5 
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�̇�c.m.(𝑚,𝑛) = − (2𝑚 + 𝑛 +
7

6
)

3

√57
𝑙∆�̇�, �̇�c.m.(𝑚,𝑛) =

3(2𝑛 − 1)

2√19
𝑙∆�̇�. 

𝐸c.m.,k
trans =

𝑀

2
[𝑣c.m.(0,0)

2 + 𝑣c.m.(0,1)
2 + 𝑣c.m.(1,0)

2 + 𝑣c.m.(1,1)
2 ] =

164

57
𝑀𝑙2(∆�̇�)2. 

𝑣r.c.(0,0) = 𝑣r.c.(1,1) =
𝑑(√3𝑙 cos 𝛼)

𝑑𝛼
|

𝛼=𝛼E

∆�̇� 

𝑣c.m.(𝑚,𝑛)
2 = �̇�c.m.(𝑚,𝑛)

2 + �̇�c.m.(𝑚,𝑛)
2 =

(12𝑚+6𝑛+7)2+27

228
𝑙2(∆�̇�)2,        (1 point) 

 

𝐸k
trans = 𝐸c.m.,k

trans + 𝐸k
rot =

347

114
𝑀𝑙2(∆�̇�)2.      (1 point) 

 

Alternatively, another way to get 𝐸𝑘
trans is based on the center of mass of the whole system: 

𝐸k = ∑ 𝐸c.m.,k
trans + ∑ 𝐸r.c.,k

rot   (0.5 points)                            - Eq. (12)    

where 

𝐸r.c.,k
trans =

𝑀

2
[𝑣r.c.(0,0)

2 + 𝑣r.c.(1,0)
2 + 𝑣r.c.(0,1)

2 + 𝑣r.c.(1,1)
2 ]           - Eq. (13) 

is the translational kinetic energy relative to the center of mass of the system and 

𝐸c.m.,k
trans =

4𝑀

2
𝑣c.m.

2                                                                     - Eq. (14) 

is the translational kinetic energy of the center of mass of the system.  

The center of mass of each of the 2×2 = 4 triangles always form diamond shape with 

lateral length 2l cos α. The center of mass of the whole system is at the center of the 

diamond shape. Hence  

𝑣r.c.(1,0) = 𝑣r.c.(0,1) =
𝑑(𝑙 cos 𝛼)

𝑑𝛼
|

𝛼=𝛼E

∆�̇�                                   - Eq. (15) 

Substituting Eqs. (14) and (15) into Eq. (13), we obtain 

 

𝐸r.c.,k
trans = 4 sin 𝛼E

2 𝑀𝑙2(∆𝛼)̇2                                         - Eq. (16) 

For 𝐸c.m.,k
trans , 
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𝑥c.m. = 𝑥c.m.(0,0) +
1

2
(𝑥B(0,0) + 𝑥A(1,0)) 

𝑦c.m. = 𝑦c.m.(0,0) +
1

2
∆𝑦 

𝐸k = 𝐸k
rot + 𝐸r.c.,k

trans + 𝐸c.m.,k
trans  

= (
5

6
+ 14 sin2 𝛼𝐸) 𝑀𝑙2(∆𝛼)̇2 

𝑣c.m. = √(
d𝑥c.m.

d𝛼
)

2

+ (
d𝑦c.m.

d𝛼
)

2

|
𝛼=𝛼E

∆�̇�                                     - Eq. (17) 

is the velocity of the center-of-mass of the four triangular plates, with 

=
√3𝑙

3
cos (

𝜋

6
+ 𝛼) +

3

2
𝑙 cos 𝛼                                            - Eq. (18) 

= −
√3𝑙

3
sin (

𝜋

6
+ 𝛼) −

√3

2
𝑙 cos 𝛼                                        - Eq. (19) 

 

Substituting Eqs. (17), (18) and (19) and into Eq. (14), we obtain 

𝐸c.m.,k
trans = (

2

3
+ 10 sin2 𝛼𝐸) 𝑀𝑙2(∆𝛼)̇2 (0.5 points)                    - Eq. (20)   

 

Combining Eqs. (12), (16) and (20), we obtain 

 

=
347

114
𝑀𝑙2(∆𝛼)̇2     (1.5 points)                            - Eq. (21)    

 

According to Eqs. (8), (9) and (21), 

 

𝑓 =
1

2𝜋
√

√57

3
𝑀𝑔𝑙

347

114
𝑀𝑙2

=
1

2𝜋
√38√57

347

𝑔

𝑙
  (0.5 points)               - Eq. (22)    

[Note 1: 0.5 point should be deducted if there are numerical mistakes, but all steps are 

correct. 

Note 2: A rough estimate of   𝑓~√
𝑔

𝑙
 can get 0.5 points out of 5 points.] 
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B1 

𝑦A(𝑚,𝑛) = −𝑛𝑙 sin (
𝜋

3
− 𝛼) − 𝑛𝑙 sin (

𝜋

3
+ 𝛼) = −√3𝑛𝑙 cos 𝛼 

𝑦B(𝑚,𝑛) = 𝑦A(𝑚,𝑛) − 𝑙 sin 𝛼 = −√3𝑛𝑙 cos 𝛼 − 𝑙 sin 𝛼 

𝐸p = ∑ 𝐸p(𝑚, 𝑛)
𝑁−1

𝑚,𝑛=0
 

∑ 1
𝑁−1

𝑚=0
= ∑ 1

𝑁−1

𝑛=0
= 𝑁 

For arbitrary N, the total potential energy 

𝐸p = ∑ 𝐸p(𝑚, 𝑛)𝑁−1
𝑚,𝑛=0                                                - Eq. (23)  

where 

𝐸p(𝑚, 𝑛) =
1

3
𝑀𝑔[𝑦A(𝑚,𝑛) + 𝑦B(𝑚,𝑛) + 𝑦C(𝑚,𝑛)]                     - Eq. (24)  

(0.5 points for Eqs. (23) and (24)) 

and 

𝑦C(𝑚,𝑛) = 𝑦A(𝑚,𝑛) − 𝑙 sin (
𝜋

3
+ 𝛼) = −√3𝑛𝑙 cos 𝛼 − 𝑙 sin (

𝜋

3
+ 𝛼)                  - Eq. (25)  

(0.5 points for all three correct coordinates) 

Thus, 

𝐸p(𝑚, 𝑛) = −
1

3
𝑀𝑔𝑙 [3√3𝑛 cos 𝛼 + sin 𝛼 + sin (

𝜋

3
+ 𝛼)]                          - Eq. (26)  

and 

= −
1

3
𝑀𝑔𝑙 ∑ [3√3𝑛 cos 𝛼 + sin 𝛼 + sin (

𝜋

3
+ 𝛼)]𝑁−1

𝑚,𝑛=0   (0.5 points)   - Eq. (27)  

 

Using the mathematical relations 

and 

∑ 𝑚𝑁−1
𝑚=0 = ∑ 𝑛𝑁−1

𝑛=0 =
𝑁(𝑁−1)

2
                               - Eq. (28), 

Eq. (27) becomes 

3 
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𝐸p = −
1

3
𝑁2𝑀𝑔𝑙 [

3√3(𝑁 − 1) cos 𝛼

2
+ sin 𝛼 + sin (

𝜋

3
+ 𝛼)] 

or       = −
1

3
𝑁2𝑀𝑔𝑙 [

√3(3𝑁−2) cos 𝛼

2
+

3

2
sin 𝛼]  (1 points)                     - Eq. (29) 

  

At equilibrium, 
d𝐸p

d𝛼
= 0, therefore 

−
3√3(𝑁−1) sin 𝛼E

′

2
+ cos 𝛼E

′ + cos (
𝜋

3
+ 𝛼E

′ ) = 0                    - Eq. (30) 

𝛼E
′ = tan−1 (

√3

3𝑁−2
)  (0.5 points)                           - Eq. (31) 

 

[Remark: Increasing α lowers each triangle relative to its vertex A, but globally raises the 

system, i.e. the bottom tube is raised higher. When 𝑵 → ∞ , the global displacement 

dominates, consequently 𝜶 → 𝟎.] 

B2 

𝐸c.m.(𝑚,𝑛) =
𝑀

2
𝑣c.m.(𝑚,𝑛)

2  

Under a small perturbation, the potential energy change, according to Eq. (29) is 

∆𝐸p ≈
1

2

𝑑2𝐸p

d𝛼2 |
𝛼=𝛼E

′
(∆𝛼)2~𝑁3  or  𝛾1 = 3  (0.5 points)           - Eq. (32)   

[Remark: There are N
2

 triangles and the y coordinate of the total center of mass is 

proportional to N, hence 𝑬𝐩~𝑵𝟑  and 𝜸𝟏 = 𝟑 . Using this argument to derive the 

correct 𝜸𝟏 can also get 0.5 points.] 

The kinetic energy of a triangle includes the translational energy of its center of mass and 

the rotational energy about its center of mass. Hence the total kinetic energy of the N
2
 

triangles is 

𝐸k = ∑ 𝐸c.m.(𝑚,𝑛) + ∑ 𝐸r.c.(𝑚,𝑛)𝑚,𝑛𝑚,𝑛                               - Eq. (33) 

where 

𝐸r.c.(𝑚,𝑛) =
1

2

𝑀𝑙2

12
(∆�̇�)2 =

1

24
𝑀𝑙2(∆�̇�)2~1                               - Eq. (34) 

and 

=
𝑀(∆�̇�)2

2
[(

d𝑥c.m.(𝑚,𝑛)

d𝛼
)

2

+ (
d𝑦c.m.(𝑚,𝑛)

d𝛼
)

2

]
𝛼=𝛼E

′
   (0.5 points)                 - Eq. (35) 

3 
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𝑥c.m.(𝑚,𝑛) = 𝑥A(𝑚,𝑛) +
√3𝑙

3
cos (

𝜋

6
+ 𝛼) 

= (2𝑚 + 𝑛)𝑙 cos 𝛼 +
𝑙

2
cos 𝛼 −

√3𝑙

6
sin 𝛼 

𝑦c.m.(𝑚,𝑛) = 𝑦A(𝑚,𝑛) +
√3𝑙

3
sin (

𝜋

6
+ 𝛼) 

d𝑥c.m.(𝑚,𝑛)

d𝛼
= [−(2𝑚 + 𝑛) sin 𝛼 −

1

2
sin 𝛼 −

√3

6
cos 𝛼] 𝑙 

d𝑦c.m.(𝑚,𝑛)

d𝛼
= [−√3𝑛 sin 𝛼 −

√3

6
sin 𝛼 +

1

2
cos 𝛼] 𝑙 

𝐸k = ∑ 𝐸c.m.(𝑚,𝑛) + ∑ 𝐸r.c.(𝑚,𝑛)
𝑚,𝑛𝑚,𝑛

~𝑁 × 𝑁 × 1~𝑁2 

 

Since 

and 

= √3𝑛𝑙 cos 𝛼 +
√3𝑙

6
cos 𝛼 +

𝑙

2
sin 𝛼                                         - Eq. (36)   

(0.5 points for correct x and y) 

 

 

we have 

𝐸c.m.(𝑚,𝑛) =
1

2
𝑀𝑙2(∆�̇�)2 [

(4𝑚2 + 4𝑛2 + 4𝑚𝑛 + 2𝑚 + 2𝑛) sin2 𝛼E
′

+
2√3

3
(𝑚 − 𝑛) sin 𝛼E

′ cos 𝛼𝐸
′ +

1

3

]       - Eq. (37)  

 

Since 𝛼E
′ ~

1

𝑁
 in Eq. (31), we have 

𝐸c.m.(𝑚,𝑛) = 𝐴 ∙ 𝑁2 ∙
1

𝑁2 + 𝐵 ∙ 𝑁 ∙
1

𝑁
+ 𝐶~1  (0.5 points)               - Eq. (38)  

According to Eqs. (33), (34) and (38), we have 

or 𝛾2 = 2 (0.5 points)                                    - Eq. (39)  
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[Remarks: 𝑬𝐤~𝑵𝟐  because there are N
2

 triangles, each contribute 𝑬r.c.(𝒎, 𝒏)~𝟏  

(relative-to-center-of-mass kinetic energy) and  𝑬c.m.(𝒎, 𝒏)~𝟏  (center-of-mass kinetic 

energy).] 

Note that 𝐸r.c.(𝑚, 𝑛)~1  is true for arbitrary α while 𝐸c.m.(𝑚, 𝑛)~1  is only true for the 

special case of 𝛼E
′ → 0 or 𝑁 → ∞.  

 

Therefore 

𝑓E
′~√

𝐸p

𝐸k
~√𝑁   

or  𝛾3 = 0.5  (0.5 points)                                - Eq. (40)    

C1 The minimum force should act on the farthest triangle (N − 1, N − 1), whose motion can be 

decomposed into the motion of the center of mass and the rotation around the center of 

mass: �⃗� = �⃗�c.m. + �⃗�rot. As shown in the figure, �⃗�rot of vertex C makes the smallest angle 

relative to the direction of �⃗�c.m. near 𝛼m ≡ 𝜋/3. Hence its displacement is the largest and 

its corresponding force is minimum, i.e. the minimum force should act on vertex C(N − 1, 

N − 1). (1 point) 

 

[Remarks: A rigorous calculation is given in Appendix 3.] 

1 
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C2 

∆𝐸p(𝛼m) =
𝑑𝐸p

𝑑𝛼
|

𝛼=𝛼m

∆𝛼 

=
1

3
𝑁2𝑀𝑔𝑙 [(

3√3𝑁

2
− √3) sin 𝛼m −

3

2
cos 𝛼m] ∆𝛼 

∆𝑥C(𝑚,𝑛) = − [(2𝑚 + 𝑛) sin 𝛼m − sin (
𝜋

3
+ 𝛼m)] 𝑙∆𝛼 

∆𝑦C(𝑚,𝑛) = − [√3𝑛 sin 𝛼m − cos (
𝜋

3
+ 𝛼m)] 𝑙∆𝛼 

𝜃𝐹min
= tan−1 [

∆𝑦C(𝑁−1,𝑁−1)

∆𝑥C(𝑁−1,𝑁−1)
] + 𝜋 

 At  𝛼 = 𝛼m ≡ 𝜋/3, a small change in α will change the potential energy by: 

=
3

4
(𝑁 − 1)𝑁2𝑀𝑔𝑙∆𝛼  (1 point)                                             - Eq. (41) 

  

The displacement of C(m,n) point is 

=
(2𝑚+𝑛+1)√3

2
𝑙∆𝛼  (0.5 points) 

=
(3𝑛+1)

2
𝑙∆𝛼  (0.5 points) 

 

For C(N-1,N-1), ∆𝑟 = √(∆𝑥)2 + (∆𝑦)2 = (3𝑁 − 2)(𝑙∆𝛼) .  (1 point) 

Hence 

𝐹min =
∆𝐸p(𝛼m)

∆𝑟max
=

3(𝑁−1)𝑁2

4(3𝑁−2)
𝑀𝑔 (1 point)                           - Eq. (42) 

   

and 

= − tan−1 √3

3
+ 𝜋 =

5𝜋

6
   (1 point)                     - Eq. (43)

  

[Remarks: This 𝜽𝑭min
 is not perpendicular to the  C(N-1,N-1)–A(0,0) direction because 

of the constraints of the tunes, e.g.  A(1,0), A(2,0), A(3,0), ⋯ , are also the holding 

points.] 

5 
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∆𝐸p ≈
1

2

𝑑2𝐸p

𝑑𝛼2
|

𝛼=𝛼𝐸
′

(∆𝛼)2 

=
1

3
𝑁2𝑀𝑔𝑙 (

3√3𝑁 − 2√3

2
cos 𝛼E

′ +
3

2
sin 𝛼E

′ )
(∆𝛼)2

2
 

𝐸c.m.(𝑚,𝑛) =
𝑀

2
𝑣c.m.(𝑚,𝑛)

2  

= (2𝑚 + 𝑛)𝑙 cos 𝛼 +
𝑙

2
cos 𝛼 −

√3𝑙

6
sin 𝛼 

𝑦c.m.(𝑚,𝑛) = 𝑦A(𝑚,𝑛) −
√3𝑙

3
sin (

𝜋

6
+ 𝛼) 

Appendix 1:  

(a) Calculation of the exact 𝐸p, 𝐸k and 𝑓E
′  in Parts (C), (D) and € for arbitrary  N 

Under a small perturbation, the potential energy change is 

 

=
√3(3𝑁−2)2+9

12
𝑁2𝑀𝑔𝑙(∆𝛼)2                                                 - Eq. (44) 

 

The kinetic energy of a triangle includes the translational energy of its center of mass and 

the rotational energy around its center of mass. Hence the total kinetic energy of the N
2
 

triangles is 

𝐸k = ∑ 𝐸c.m.(𝑚,𝑛) + ∑ 𝐸r.c.(𝑚,𝑛)𝑚,𝑛𝑚,𝑛                                        - Eq. (45) 

where 

𝐸r.c.(𝑚,𝑛) =
1

2

𝑀𝑙2

12
(∆�̇�)2 =

1

24
𝑀𝑙2(∆�̇�)2                                     - Eq. (46) 

and 

=
𝑀(∆𝛼)̇ 2

2
[(

d𝑥c.m.(𝑚,𝑛)

d𝛼
)

2

+ (
d𝑦c.m.(𝑚,𝑛)

d𝛼
)

2

]
𝛼=𝛼E

′
                     - Eq. (47) 

Since 

𝑥c.m.(𝑚,𝑛) = 𝑥A(𝑚,𝑛) +
√3𝑙

3
cos (

𝜋

6
+ 𝛼)  

and 

N/A 
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d𝑥c.m.(𝑚,𝑛)

d𝛼
= [−(2𝑚 + 𝑛) sin 𝛼 −

1

2
sin 𝛼 −

√3

6
cos 𝛼] 𝑙 

d𝑦c.m.(𝑚,𝑛)

d𝛼
= [−√3𝑛 sin 𝛼 +

√3

6
sin 𝛼 −

1

2
cos 𝛼] 𝑙 

𝐸𝑘 = ∑ 𝐸c.m.(𝑚,𝑛)
𝑚,𝑛

+ ∑ 𝐸r.c.(𝑚,𝑛)
𝑚,𝑛

 

= [
1

6
(11𝑁 − 1)(𝑁 − 1) sin2 𝛼E

′ +
5

24
] 𝑁2𝑀𝑙2(∆�̇�)2 

𝑓E
′ =

1

2𝜋
√

√3(3𝑁 − 2)2 + 9
12 𝑁2𝑀𝑔𝑙

[
(11𝑁 − 1)(𝑁 − 1)

2(3𝑁 − 2)2 + 6
+

5
24] 𝑁2𝑀𝑙2

 

𝑥c.m.(sys.)(𝛼) =
∑ 𝑥c.m.(𝑚,𝑛)𝑚,𝑛

𝑁2
 

= −√3𝑛𝑙 cos 𝛼 −
√3𝑙

6
cos 𝛼 −

𝑙

2
sin 𝛼                              - Eq. (48) 

Hence, 

 We have 

𝐸c.m.(𝑚,𝑛) =
1

2
𝑀𝑙2(∆�̇�)2 [

(4𝑚2 + 4𝑛2 + 4𝑚𝑛 + 2𝑚 + 2𝑛) sin2 𝛼E
′

+
2√3

3
(𝑚 − 𝑛) sin 𝛼E

′ cos 𝛼E
′ +

1

3

]          - Eq. (49) 

and 

= [
(11𝑁−1)(𝑁−1)

2(3𝑁−2)2+6
+

5

24
] 𝑁2𝑀𝑙2(∆�̇�)2                                          - Eq. (50)  

 

With Eqs. (44) and (50), we have 

=
1

2𝜋 √
2√3(3𝑁−2)2+9

[
12(11𝑁−1)(𝑁−1)

(3𝑁−2)2+3
+5]

𝑔

𝑙
                                                  - Eq. (51) 

(b) Center of mass movement of the whole system 

According to Eq. (48), we have 
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=

∑ [(2𝑚 + 𝑛)𝑙 cos 𝛼 +
𝑙
2 cos 𝛼 −

√3𝑙
6 sin 𝛼]𝑚,𝑛

𝑁2
 

= (
3𝑁 − 2

2
) 𝑙 cos 𝛼 −

√3𝑙

6
sin 𝛼 

𝑦c.m.(𝑚,𝑛)(𝛼) =
∑ 𝑦c.m.(𝑚,𝑛)𝑚,𝑛

𝑁2
 

= −

∑ [√3𝑛𝑙 cos 𝛼 +
√3𝑙

6 cos 𝛼 +
𝑙
2 sin 𝛼]𝑚,𝑛

𝑁2
 

and  

= − (
3𝑁−2

6
) √3𝑙 cos 𝛼 −

𝑙 sin 𝛼

2
                                          - Eq. (52) 

Eq. (52) is the trajectory of the center of mass for the whole system, which is not a straight 

line. 

 Appendix 2: Calculation of the moment of inertia of a triangular plate 

 

An equilateral triangle with lateral length l can be divided into four small equilateral 

triangles with lateral length l/2. For the central small triangle centered at c1, its moment of 

inertia is 

𝐼1 = 𝛽
𝑀

4
(

𝑙

2
)

2

                                                        - Eq. (53) 

For the non-central small triangle centered at𝑐2, 𝑐2
′ and 𝑐2

′′
 , 

𝐼2 = 𝐼1 +
𝑀

4
𝑑2                                                       - Eq. (54) 

where 𝑑 = √3𝑙/6 is the distance between the centers of triangles 1 and 2. The second term 

is from the parallel-axis theorem. The moment of inertia of the whole triangle is the sum of 

the moment of inertia of the four sub-triangles: 

N/A 
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𝛽𝑀𝑙2 = 4 × 𝛽
𝑀

4
(

𝑙

2
)

2

+ 3 ×
𝑀

4
𝑑2                          - Eq.(55) 

Thus 

𝛽 =
1

12
                                                             - Eq. (56) 
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𝑥A(𝑚,𝑛) = (2𝑚 + 𝑛) cos 𝛼m 𝑙 

𝑦A(𝑚,𝑛) = −√3𝑛 cos 𝛼m 𝑙 

𝑥B(𝑚,𝑛) = (2𝑚 + 𝑛 + 1) cos 𝛼m 𝑙 

𝑦B(𝑚,𝑛) = −(√3𝑛 cos 𝛼m + sin 𝛼m)𝑙 

𝑥C(𝑚,𝑛) = [(2𝑚 + 𝑛) cos 𝛼m + cos (
𝜋

3
+ 𝛼m)] 𝑙 

∆𝑥A(𝑚,𝑛) = −(2𝑚 + 𝑛) sin 𝛼m 𝑙∆𝛼 = −
(2𝑚 + 𝑛)√3

2
𝑙∆𝛼 

∆𝑦A(𝑚,𝑛) = √3𝑛 sin 𝛼m (𝑙∆𝛼) =
3𝑛

2
𝑙∆𝛼 

∆𝑥B(𝑚,𝑛) = −(2𝑚 + 𝑛 + 1) sin 𝛼m 𝑙∆𝛼 = −
(2𝑚 + 𝑛 + 1)√3

2
𝑙∆𝛼 

∆𝑦B(𝑚,𝑛) = −(−√3𝑛 sin 𝛼m + cos 𝛼m)𝑙∆𝛼 =
3𝑛 − 1

2
𝑙∆𝛼 

∆𝑥C(𝑚,𝑛) = [−(2𝑚 + 𝑛) sin 𝛼m − sin (
𝜋

3
+ 𝛼m)] 𝑙∆= −

(2𝑚 + 𝑛 + 1)√3

2
𝑙∆𝛼 

∆𝑟A(𝑚,𝑛) = √3𝑚2 + 3𝑛2 + 3𝑚𝑛(𝑙∆𝛼) 

∆𝑟B(𝑚,𝑛) = √3𝑚2 + 3𝑛2 + 3𝑚𝑛 + 3𝑚 + 1(𝑙∆𝛼) 

Appendix 3:  The minimum force corresponds to the maximum displacement of the 

exerting point of this force. 

Consider the position of vertices A, B, C of a triangle (m,n) : 

𝑦C(𝑚,𝑛) = − [√3𝑛 cos 𝛼m + sin (
𝜋

3
+ 𝛼m)] 𝑙                     - Eq. (57) 

Taking derivatives on α on the above coordinates we get 

∆𝑦C(𝑚,𝑛) = − [−√3𝑛 sin 𝛼m + cos (
𝜋

3
+ 𝛼m)] 𝑙∆𝛼 =

(3𝑛+1)

2
𝑙∆𝛼           - Eq. (58) 

 

For  ∆𝑟 = √(∆𝑥)2 + (∆𝑦)2, we have 

∆𝑟C(𝑚,𝑛) = √3𝑚2 + 3𝑛2 + 3𝑚𝑛 + 3𝑚 + 3𝑛 + 1(𝑙∆𝛼)                            - Eq. (59) 

 

N/A 
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Thus we find 

∆𝑟C(𝑚,𝑛) > ∆𝑟B(𝑚,𝑛) > ∆𝑟A(𝑚,𝑛)                                  - Eq. (60) 

Therefore, we should choose point C of the triangle (N − 1, N − 1) to obtain 

∆𝑟max = (3𝑁 − 2)𝑙∆𝛼                                           - Eq. (61) 

so that the force is minimal. 


