Theory Q1
 Optical trap of neutral atoms (12 points),
 Solution and Marking Scheme

$\mathbf{0 . 7 5 p t}$	At the instance when the seperation between charge centers is \vec{x}, the external field \vec{E} exerts on them opposite forces $\vec{F}= \pm e \vec{E}$. After a time interval $d t$, the seperation is changed to $\vec{x}+d \vec{x}$, work done by the external field on the charges is thus $d W=\vec{F} d \vec{x}=\vec{F}=e d \vec{x} \cdot \vec{E}=d \vec{p} \cdot \vec{E}$ The power received by the atomic dipole $P_{\text {abs }}=\frac{d W}{d t}=\frac{d \vec{p}}{d t} \cdot \vec{E}=\dot{\vec{p}} \cdot \vec{E}$	$\mathbf{0 . 1 5}$
$\mathbf{1 . 2}$	Total work can be obtained by integration $W=\int_{0}^{\vec{E}_{0}} d \vec{p} \cdot \vec{E}=\int_{0}^{\vec{E}_{0}} \alpha d \vec{E} \cdot \vec{E}=\frac{1}{2} \alpha \vec{E}_{0}^{2}=\frac{1}{2} \vec{p}_{0} \vec{E}_{0}$	$\mathbf{0 . 3}$
	Potential energy of the dipole is If the sign of $U_{\text {dip }}$ is incorrect or the factor $1 / 2$ is missing, students get Opt.	$\mathbf{0 . 5}$

2.1	The time average of any time dependent function is denoted by $\left.\langle f(t)\rangle=\frac{\omega}{2 \pi} \int_{0}^{2 \pi / \omega} f(t) d t\|c\| c \right\rvert\,$

$$
\begin{align*}
& U_{\text {dip }}(\vec{r})=-\frac{1}{4} \alpha(\omega) \cos \varphi \cdot E_{0}^{2}(\vec{r}) \tag{1}\\
& U_{\text {dip }}(\vec{r})=-\frac{\alpha(\omega) \cos \varphi \cdot I(\vec{r})}{2 \varepsilon_{0} c} \tag{2}
\end{align*}
$$

If student gets directly to eq. (2) - full mark (1.0pt)
If the answer is still correct but expressed in any quantity other than those requested -0.5 pt .
4.1 In one dimensional Lorentz's model, we replace $\vec{E}(\vec{r}, t) \rightarrow E(x, t)$. One can find the solution
2.0pt of the form $x=x_{0} \cos (\omega t+\varphi)$ thus from the equation of motion, $\ddot{x}+\gamma_{\omega} \dot{x}+\omega_{0}^{2} x=-e E_{0} \cos \omega t / m_{e}$ $=>x_{0}\left(\omega_{0}^{2}-\omega^{2}\right) \cos (\omega t+\varphi)-x_{0} \omega \gamma_{\omega} \sin (\omega t+\varphi)=-e E_{0} \cos \omega t / m_{e}$

	$x_{0}\left\{\left[\left(\omega_{0}^{2}-\omega^{2}\right) \cos \varphi-\omega \gamma_{\omega} \sin \varphi\right] \cos \omega t-\left[\left(\omega_{0}^{2}-\omega^{2}\right) \sin \varphi+\omega \gamma_{\omega} \cos \varphi\right] \sin \omega t\right\}=$ $=-e E_{0} \cos \omega t / m_{e}$ Comparing coefficients before $\cos \omega t$ and $\sin \omega t$ on both sides, one has $\left(\omega_{0}^{2}-\omega^{2}\right) \cos \varphi-\omega \gamma_{\omega} \sin \varphi=-\frac{e E_{0}}{m_{e} x_{0}}$ $\left(\omega_{0}^{2}-\omega^{2}\right) \sin \varphi+\omega \gamma_{\omega} \cos \varphi=0$ $x_{0}=\frac{e E_{0} / m_{e}}{\sqrt{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+\gamma_{\omega}^{2} \omega^{2}}} ;$ $\sin \varphi=\frac{\omega_{\omega}}{\sqrt{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+\gamma_{\omega}^{2} \omega^{2}}}$ $\cos \varphi=-\frac{\left(\omega_{0}^{2}-\omega^{2}\right)}{\sqrt{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+\gamma_{\omega}^{2} \omega^{2}}}$ $p=-e x=-e x_{0} \cos (\omega t+\varphi)=\alpha E_{0} \cos (\omega t+\varphi)$ $\alpha(\omega)=-\frac{e^{2}}{m_{e} \sqrt{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+\gamma_{\omega}^{2} \omega^{2}}}$ Note: students can obtain φ via any of sin, cos, tan functions: full mark (0.25 pt)	$\mathbf{0 . 5}$
	(4)	(5)

5.1 \quad The power radiated due to the damping force, thus
1.0pt

$$
\begin{aligned}
& -m_{e} \gamma_{\omega} v \cdot v=-\frac{1}{6 \pi \varepsilon_{0}} \frac{e^{2} a^{2}}{c^{3}} \\
& \Rightarrow-m_{e} \gamma_{\omega}(\omega r)^{2}=-\frac{1}{6 \pi \varepsilon_{0}} \frac{e^{2}\left(\omega^{2} r\right)^{2}}{c^{3}} \\
& \gamma_{\omega}=\frac{1}{6 \pi \varepsilon_{0}} \frac{e^{2} \omega^{2}}{m_{e} c^{3}} .
\end{aligned}
$$

6.1
0.5pt Substituting $e^{2} / m_{e}=6 \pi \varepsilon_{0} c^{3} \gamma_{\omega} / \omega^{2}$ the on-resonance damping rate $\gamma \equiv \gamma_{\omega_{0}}=\left(\omega_{0} / \omega\right)^{2} \gamma_{\omega}$. Using Eq. (1), (4), (5) and (6) one has

$$
\frac{U_{d i p}(\vec{r})}{\hbar \Gamma_{s c}(\vec{r})}=\frac{-\frac{1}{2 \varepsilon_{0} c} \alpha(\omega) \cos \varphi}{-\hbar \frac{\alpha(\omega) \sin \varphi}{\hbar \varepsilon_{0} c}}=\frac{1}{2} \frac{1}{\tan \varphi}=-\frac{1}{2} \frac{\omega_{0}^{2}-\omega^{2}}{\left(\omega^{3} / \omega_{0}^{2}\right) \gamma},
$$

7.1 \quad From (1), (5) and (6) one has

	$U_{\text {depth }}=\left\|U_{0}\right\|=\left\|\frac{\alpha(\omega) \cos (\varphi) I(0,0)}{2 \varepsilon_{0} c}\right\|=\left\|\frac{\alpha(\omega) \cos (\varphi)}{2 \varepsilon_{0} c} \frac{2 P}{\pi D_{0}^{2}}\right\|=\left\|6 c^{2} \frac{\left(\omega_{0}^{2}-\omega^{2}\right) \gamma / \omega_{0}^{2}}{\left[\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+\gamma^{2} \frac{\omega^{6}}{\omega_{0}^{4}}\right]} \frac{P}{D_{0}^{2}}\right\|$	0.5
$\begin{gathered} \hline 7.2 \\ 1.0 \mathrm{pt} \end{gathered}$	Trap depth when $P=4 m W$, laser wavelength $\lambda=985 \mathrm{~nm}$, and $D_{0}=6 \mu \mathrm{~m}$. For sodium $\lambda_{0}=589 \mathrm{~nm}$. One has: $\omega=\frac{2 \pi c}{\lambda} ; \omega_{0}=\frac{2 \pi c}{\lambda_{0}}$; $\begin{aligned} & \text { And } \gamma=\frac{1}{6 \pi \varepsilon_{0}} \frac{e^{2} \omega_{0}^{2}}{m_{e} c^{3}}=\frac{2 \pi e^{2}}{3 \varepsilon_{0} m_{e} c \lambda_{0}^{2}}=6.4 \times 10^{7} s^{-1} \\ & U_{\text {depth }}=f k_{B} T_{0} \quad \text { (factors } f=3 / 2,1 / 2,1 \text { are all accepted) } \\ & \Rightarrow f . T_{0}=4.13 \mu K \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.25 \\ & 0.25 \end{aligned}$

$\mathbf{8 . 1}$	Using linear expansion, we have $\Omega_{\rho}=\sqrt{\frac{4 k_{B} f T_{0}}{m D_{0}^{2}}}$	$\mathbf{0 . 2 5}$
	and $\Omega_{z}=\sqrt{\frac{2 k_{B} f T_{0}}{m z_{R}^{2}}}$	$\mathbf{0 . 2 5}$

\begin{tabular}{|c|c|c|}
\hline \[
\begin{gathered}
9.1 \\
0.5 \mathrm{pt}
\end{gathered}
\] \& \begin{tabular}{l}
Mean potential enery \(U\left(z_{0}\right)=\) const \(+\frac{1}{2} m \Omega_{z}^{2} z_{0}^{2}\). \\
To estimate the particle momentum, we assume \(p \sim \Delta p, \Delta z \sim z_{0}\). \\
The uncertainty principle is written now \(p \sim \frac{\hbar}{z_{0}}\). \\
Kinetic energy \(K=\frac{p^{2}}{2 m}=\frac{\hbar^{2}}{2 m z_{0}^{2}}\). \\
Total energy of the particle \(E=\frac{1}{2} m \Omega_{z}^{2} z_{0}^{2}+\frac{\hbar^{2}}{2 m z_{0}^{2}}+\) const \\
Minimal energy corresponds to the energy balance \(\frac{1}{2} m \Omega_{z}^{2} z_{0}^{2}=\frac{\hbar^{2}}{2 m z_{0}^{2}} \Rightarrow z_{0}=\sqrt{\frac{\hbar}{m \Omega_{z}}}\). \\
If the student followed a correct analysis any obtained correct answer upto some multiplication factor: full mark \\
If the student obtained correct answer using dimensional analysis: only 0.1 pt is granted
\end{tabular} \& 0.2
0.1

0.1
0.1

\hline \[
$$
\begin{gathered}
9.2 \\
0.25 \mathrm{pt}
\end{gathered}
$$

\] \& | Insert the expression of the cloud size $z_{0}=\sqrt{\frac{\hbar}{m \Omega_{z}}}$ to the energy expression $E_{\min }=\frac{1}{2} m \Omega_{z}^{2} z_{0}^{2}+\frac{\hbar^{2}}{2 m z_{0}^{2}}+$ const one obtains $E_{\min }=\hbar \Omega_{z}+$ const. |
| :--- |
| If the student obtained the answer $E_{\text {min }}=\frac{\hbar \Omega_{z}}{2}$ by using $E_{n}=\hbar \Omega_{z}\left(n+\frac{1}{2}\right):$ full mark | \& 0.25

\hline 9.3 \& From the uncertainty principle, the particle velocity therefore is estimated to be \& 0.25

\hline
\end{tabular}

| 0.25pt | $m v_{z}=\frac{\hbar}{z_{0}}=\sqrt{m \hbar \Omega_{z}} \Rightarrow v_{z}=\sqrt{\frac{\hbar \Omega_{z}}{m}}$. |
| :---: | :---: | :---: |
| | Alternative estimation is constructed from kinetic energy: $\frac{1}{2} m v_{z}^{2}=K=\frac{1}{2} \hbar \Omega_{z} \Rightarrow v_{z}=\sqrt{\frac{\hbar \Omega_{z}}{m}}$ |

\begin{tabular}{|c|c|c|}
\hline \[
\begin{gathered}
10.1 \\
0.5 p t
\end{gathered}
\] \& \begin{tabular}{l}
For the three dimendional trap, one has: \(z_{0}=\sqrt{\frac{\hbar}{m \Omega_{z}}}\). \\
Similarly for \(x, y\) coordinates \(x_{0}=y_{0}=\sqrt{\frac{\hbar}{m \Omega_{\rho}}}\) and thus \(\rho_{0}=\sqrt{x_{0}^{2}+y_{0}^{2}}=\sqrt{\frac{2 \hbar}{m \Omega_{\rho}}}\). \\
The condensate aspect ratio: \(\frac{z_{0}}{\rho_{0}}=\sqrt{\frac{\Omega_{\rho}}{2 \Omega_{z}}}\). \\
Student may use either \(x_{0}, y_{0}\) or \(\rho_{0}\) in estimating the radial size of the cloud. Correct answers upto multiplication factor: full mark
\end{tabular} \& 0.2
0.2
0.1 \\
\hline \[
\begin{gathered}
10.2 \\
0.5 \mathrm{pt}
\end{gathered}
\] \& \begin{tabular}{l}
\[
\begin{gathered}
v_{z}=\sqrt{\frac{\hbar \Omega_{z}}{m}} \\
v_{x}=v_{y}=\sqrt{\frac{\hbar \Omega_{\rho}}{m}}, \Rightarrow v_{\rho}=\sqrt{v_{x}^{2}+v_{y}^{2}} \sim \sqrt{\frac{2 \hbar \Omega_{\rho}}{m}} \\
\frac{v_{\rho}}{v_{z}} \\
\sim \sqrt{\frac{2 \Omega_{\rho}}{\Omega_{z}}}
\end{gathered}
\] \\
Student may use either \(v_{x}, v_{y}\) or \(v_{\rho}\) in estimating expansion velocity in the radial direction. Correct answers upto some multiplication factor: full mark
\end{tabular} \& 0.25
0.25 \\
\hline \[
\begin{gathered}
10.3 \\
0.5 \mathrm{pt}
\end{gathered}
\] \& \begin{tabular}{l}
After the time \(t\), the sizes of the condensate cloud are:
\[
z_{L}=z_{0}+v_{z} t \approx v_{z} t \quad \rho_{L}=\rho_{0}+v_{\rho} t \approx v_{\rho} t .
\] \\
The cloud aspect ratio after the time \(t, \frac{z_{L}}{\rho_{L}} \approx \frac{v_{z}}{v_{\rho}} \sim \sqrt{\frac{\Omega_{z}}{2 \Omega_{\rho}}} \ll 1\). \\
Correct final answers upto some multiplication factor: full mark
\end{tabular} \& 0.
25

0.25

\hline \[
$$
\begin{gathered}
10.4 \\
0.5 \mathrm{pt}
\end{gathered}
$$

\] \& | Due to isotropic nature of thermal cloud, described by the Maxwell distribution: $v_{T, z}=v_{T, \rho} \Rightarrow \frac{v_{T, \rho}}{v_{T, z}} \approx 1 .$ |
| :--- |
| one can easily find $z_{T, L}=z_{0}+v_{z} t \approx v_{z} t, \rho_{T, L}=\rho_{0}+v_{\rho} t \approx v_{\rho} t$. |
| After a very long time, the aspect ratio of the thermal cloud therefore: $\rho_{T, L}: z_{T, L} \sim 1$ |
| Note: students use different velocities (arithmetrical, rms, projectionetc.) to estimate the expansion of the cloud, as long as they give the correct ratio $\rho_{L}: z_{T} \sim 1$, full mark of this sub question is granted. In this question, the correct multiplication factor is requested. For incorrect multiplication factor: zero mark | \& 0.2

0.2
0.1

\hline
\end{tabular}

