Theory Q2
 Space elevator (8 points)
 Solution and Marking Scheme

1 Cylindrical Space Elevator with Uniform Cross Section

\begin{tabular}{|c|c|c|}
\hline \[
\begin{aligned}
\& 1.1 \\
\& 0.5 \mathrm{pt}
\end{aligned}
\] \& \begin{tabular}{l}
Consider a small element of the cylinder of thickness \(d r\) at position \(r\), there are four forces acting on that element: gravitational \(\vec{W}(r)\), centrifugal \(\vec{F}_{C}(r)\), cable tension \(\vec{F}_{D}=\vec{T}(r)\) at position \(r\), tension \(\vec{F}_{U}=\vec{T}(r+d r)\) at position \(r+d r\). Positive direction is chosen from the Earth center outward. The net force must be zero, therefore:
\[
\begin{aligned}
\& -W+F_{C}+T(r+d r)-T(r)=0 \\
\& \Leftrightarrow-W+F_{C}+A \cdot \sigma(r+d r)-A \cdot \sigma(r)=0
\end{aligned}
\] \\
Hence
\[
\begin{aligned}
\& A d \sigma=\frac{G M(A d r \rho)}{r^{2}}-(A d r \rho) \omega^{2} r \\
\& \Rightarrow \frac{d \sigma}{d r}=G M \rho\left(\frac{1}{r^{2}}-\frac{r}{R_{G}^{3}}\right)
\end{aligned}
\] \\
Note that, the tensions at the ends of the cylinder are zero. Integrating the above equation from \(R\) to \(R_{G}\), one obtains the stress at \(\mathrm{R}_{\mathrm{G}}\)
\[
\sigma\left(R_{G}\right)=G M \rho\left[\frac{1}{R}-\frac{3}{2 R_{G}}+\frac{R^{2}}{2 R_{G}^{3}}\right]
\] \\
(b) \\
Similarly, integrating from \(\mathrm{R}_{\mathrm{G}}\) to H (the distance from the Earth center to the upper end of the cylinder), one obtains the same stress at \(\mathrm{R}_{\mathrm{G}}\)
\[
\sigma\left(R_{G}\right)=G M \rho\left[\frac{1}{H}-\frac{3}{2 R_{G}}+\frac{H^{2}}{2 R_{G}^{3}}\right]
\] \\
Equating the two above expressions, one arrives to the equation:
\[
R H^{2}+R^{2} H-2 R_{g}^{3}=0,
\] \\
from where \(H\) is determined: \(H=\frac{R}{2}\left[\sqrt{1+8\left(\frac{R_{G}}{R}\right)^{3}}-1\right]=1.51 \times 10^{5} \mathrm{~km}\). \\
The height of the cylinder \(L=H-R=\frac{R}{2}\left[\sqrt{1+8\left(\frac{R_{G}}{R}\right)^{3}}-3\right]=1.45 \times 10^{5} \mathrm{~km}\). \\
Note: Students can just equalize the net gravitational force and the net centrifugal force acting on the cylinder to obtain H correctly: full mark.
\end{tabular} \& 0.1

0.1
0.1
0.1
0.1
0.1

\hline $$
\begin{aligned}
& 1.2 \\
& 0.5 \mathrm{pt}
\end{aligned}
$$ \& The maximal stress is determined from the requirement \&

\hline
\end{tabular}

	$\frac{d \sigma}{d r}=G M \rho\left(\frac{1}{r^{2}}-\frac{r}{R_{G}^{3}}\right)=0$ which yields $r=R_{G}$	$\begin{aligned} & 0.25 \\ & 0.25 \end{aligned}$
$\begin{aligned} & \hline 1.3 \\ & 0.5 \mathrm{pt} \end{aligned}$	Maximal stress is expressed by $\begin{align*} & \sigma\left(R_{G}\right)=G M \rho\left[\frac{1}{R}-\frac{3}{2 R_{G}}+\frac{R^{2}}{2 R_{G}^{3}}\right] \tag{1}\\ & \sigma\left(R_{G}\right)=\rho g\left[R-\frac{3 R^{2}}{2 R_{G}}+\frac{R^{4}}{2 R_{G}^{3}}\right] \tag{2} \end{align*}$ Numerical calculation with $\rho=7900 \mathrm{~kg} / \mathrm{m}^{3}$ one obtains the ratio: $\frac{\sigma\left(R_{G}\right)}{5.0 G A}=\frac{383 G P a}{5.0 G P a}=76.5$ This ratio is much larger than 1 , therefore steel is not suitable to build this kind of elevator. If eq. (2) is not obtained and other correct equation like eq. (1) is derived - 0.1pt from full mark (get only 0.15pt for maximal stress).	0.25 0.25

2 Carbon Nanotubes

$\mathbf{2 . 1}$	Expand exponential function in series, and limit to the lowest power of x, one	
has $V=V_{o}\left(-1+\frac{4 x^{2}}{a^{2}}\right)$ and gets $P=-V_{0}$ and	$\mathbf{0 . 1}$	
	$Q=\frac{4 V_{0}}{a^{2}}$.	$\mathbf{0 . 1 5}$
$\mathbf{2 . 2}$	$F=-\frac{d V}{d x}=-\frac{8 V_{0}}{a^{2}} x$	
$\mathbf{0 . 2 5 p t}$	then $k=\frac{8 V_{0}}{a^{2}}=313 \mathrm{Nm}^{-1}$.	$\mathbf{0 . 1}$
$\mathbf{2 . 3}$	Young's modulus of the carbon nanotube. Denote d the diameter of the carbon nanotube, one has $d=27 b / \pi$. $E_{l}=\frac{\text { stress } \sigma}{\text { strain } \varepsilon}=\frac{F / A}{x / a}=\frac{k x / A}{x / a}=\frac{k a}{A}=\frac{32 V_{0}}{a \pi d^{2}}$ $E=N E_{1}=342 \mathrm{GPa}$	$\mathbf{0 . 2 5}$

$\begin{aligned} & 2.4 \\ & 0.5 \mathrm{pt} \end{aligned}$	$\begin{aligned} & V_{0}=\frac{1}{2} k x_{\max }^{2} \Rightarrow x_{\max }=\sqrt{\frac{2 V_{0}}{k}}=\frac{1}{2} a \\ & =0.071 \mathrm{~nm} \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.25 \end{aligned}$
$\begin{aligned} & 2.5 \\ & 0.5 p t \end{aligned}$	Tensile strength of the carbon nanotube, $\sigma_{0}=E \frac{x_{\max }}{a}=E / 2=171 \mathrm{GPa}$.	0.5

2.6 0.5pt	Volume $\frac{\pi d^{2}}{4} \times \frac{3 a}{2}$ contains 18 carbon atoms, therefore the density of the carbon $\rho=\frac{2 \times 27 \times 12 \times 10^{-3}}{N_{A} \times \frac{\pi d^{2}}{4} \times \frac{3 a}{2}}=1440 \mathrm{~kg} / \mathrm{m}^{3}$.

3 Tapered Space Elevator with Uniform Stress

$\begin{aligned} & 3.1 \\ & 0.5 p t \end{aligned}$	The solution to this section is analogous to that given in the previous section, however, now one has to take into account the fact that the stress σ is constant, but the cross section area A varies along the tower. $\begin{aligned} & \sigma d A=\frac{G M(A d r \rho)}{r^{2}}-(A d r \rho) \omega^{2} r \\ & \Rightarrow \frac{d A}{A}=\frac{\rho g R^{2}}{\sigma}\left(\frac{1}{r^{2}}-\frac{r}{R_{G}^{3}}\right) d r \end{aligned}$ where $\quad g=G M / R^{2} \quad$ is gravitational acceleration at the Earth surface. By (b) integration one can obtain the tower cross section as: $A(h)=A_{S} \exp \left[\frac{\rho g R^{2}}{\sigma}\left(\frac{1}{R}+\frac{R^{2}}{2 R_{G}^{3}}-\frac{1}{R+h}-\frac{(R+h)^{2}}{2 R_{G}^{3}}\right)\right]$	0.25 0.25
$\begin{aligned} & \hline 3.2 \\ & 0.5 p t \end{aligned}$	Using the condition $\mathrm{A}(\mathrm{H})=\mathrm{A}(\mathrm{R})=\mathrm{A}_{\mathrm{S}}$ one arrives to the equation $R H^{2}+R^{2} H-2 R_{G}^{3}=0$, which allows to determine $H=\frac{R}{2}\left[\sqrt{1+8\left(\frac{R_{G}}{R}\right)^{3}}-1\right]=151000 \mathrm{~km} .$	0.25 0.25
$\begin{aligned} & \text { 3.3 } \\ & 0.5 \mathrm{pt} \end{aligned}$	The ratio $\frac{A_{G}}{A_{S}}=\exp \left[\frac{R}{2 L_{C}}\left\{\left(\frac{R}{R_{G}}\right)^{3}-3\left(\frac{R}{R_{G}}\right)+2\right\}\right]=1.623$ where $L_{C}=\frac{\sigma}{\rho g}$	0.5
$\begin{aligned} & \text { 3.4 } \\ & 1.0 \mathrm{pt} \end{aligned}$	Net force exerted on the counterweight must be zero $\frac{G M m_{C}}{\left[R_{G}+h_{C}\right]^{2}}+A\left(R_{G}+h_{C}\right) \cdot \sigma=m_{C} \omega^{2}\left[R_{G}+h_{C}\right]$, replacing $A\left(R_{G}+h\right)$ from the equation for cross section area, one can determine the counterweight mass.	0.5

	$m_{C}=\frac{\rho A_{S} L_{C} \exp \left[\frac{R^{2}}{2 L_{C} R_{G}^{3}}\left(\frac{2 R_{G}^{3}+R^{3}}{R}-\frac{2 R_{G}^{3}+\left(R_{G}+h_{C}\right)^{3}}{R_{G}+h_{C}}\right)\right]}{\frac{R^{2}\left(R_{G}+h_{C}\right)}{R_{G}^{3}}\left[1-\left(\frac{R_{G}}{R_{G}+h_{C}}\right)^{3}\right]}$.	$\mathbf{0 . 5 0}$

4 Applications

$\mathbf{4 . 1}$	An object can leave the Earth if its energy at the distance r satisfies	
	$E=\frac{m(\omega r)^{2}}{2}-\frac{G M m}{r} \geq 0$ from which $r_{C}=\left(2 G M / \omega^{2}\right)^{\frac{1}{3}}=53200 \mathrm{~km}$	
In order to launch an object, the upper end of the tower must locate above the distance r_{C}.	$\mathbf{0 . 2 5}$	

4.2 We denote the Earth orbital velocity as v_{E}, the spacecraft velocity when it's
1.0pt released from the tower top as $v_{1}=\omega h_{0}$. The spacecraft can reach the furthest distance from the Sun if \vec{v}_{1} is parallel to \vec{v}_{E}. The spacecaft velocity relative to the Sun is $v_{E}+v_{1}$. The Earth orbital radius R_{E} also is the smallest distance from the sun (if one neglects the tower length compared to the radius of the Earth's orbit). r_{2} is the apogee distance of the spacecraft from the Sun, v_{2} is its velocity at apogee. Angular momentum and energy convervation laws read
$m\left(v_{E}+v_{1}\right) R_{E}=m v_{2} r_{2}$
$\frac{1}{2} m\left(v_{E}+v_{1}\right)^{2}-\frac{G M_{S} m}{R_{E}}=\frac{1}{2} m v_{2}^{2}-\frac{G M_{S} m}{r_{2}}$
Here the energy term $-\frac{G M m}{h_{0}}$ due the earth's gravity is neglected. Eliminating v_{2} one has
$\left[\left(v_{E}+\omega h_{0}\right)^{2}-\frac{2 G M_{S}}{R_{E}}\right] r_{2}^{2}+2 G M_{S} r_{2}-\left(v_{E}+\omega h_{0}\right)^{2} R_{E}^{2}=0$
from which $r_{M a x}=r_{2}=\frac{\left(v_{E}+\omega h_{0}\right)^{2} R_{E}^{2}}{2 G M_{S}-\left(v_{E}+\omega h_{0}\right)^{2} R_{E}}$.
Numerical calculation gives $\mathrm{r}_{2}=5.3 \mathrm{AU}$, that covers Jupiter's orbit.
Similarly, for the spacecraft to approach as close as possible to the Sun, the released velocity \vec{v}_{1} must be antiparallel to \vec{v}_{E}. The spacecaft velocity relative to the Sun is $v_{E}-v_{1}, \mathrm{r}_{2}$ is the perigee distance of the spacecraft from the Sun, v_{2} is its velocity at perigee.
The previous angular momentum and energy convervation laws still hold, $m\left(v_{E}-v_{1}\right) R_{E}=m v_{2} r_{2}$
0.1
0.1
0.1
0.1
0.1
0.1

| $\frac{1}{2} m\left(v_{E}-v_{1}\right)^{2}-\frac{G M_{S} m}{R_{E}}=\frac{1}{2} m v_{2}^{2}-\frac{G M_{S} m}{r_{2}}$ | $\mathbf{0 . 1}$ |
| :--- | :--- | :--- |
| Here the energy term $-\frac{G M m}{h_{0}}$ due the earth's gravity is neglected. Eliminating v_{2} | |
| one has | $\mathbf{0 . 1}$ |
| $\left[\left(v_{E}-\omega h_{0}\right)^{2}-\frac{2 G M_{S}}{R_{E}}\right] r_{2}^{2}+2 G M_{S} r_{2}-\left(v_{E}-\omega h_{0}\right)^{2} R_{E}^{2}=0$ | $\mathbf{0 . 1}$ |
| from which $r_{\min }=r_{2}=\frac{\left(v_{E}-\omega h_{0}\right)^{2} R_{E}^{2}}{2 G M_{S}-\left(v_{E}-\omega h_{0}\right)^{2} R_{E}}$. | |
| Numerical calculation gives $r_{\min }=0.43 \mathrm{AU}$, meaning the Mercury's orbit is within
 our reach. | $\mathbf{0 . 1}$ |

References

[1] Artsutanov, Y. Kosmos na elektrovoze. Komsomolskaya Pravda July 31 (1960); contents described in Lvov Science 158, 946-947 (1967).
[2] Pearson, J. The Orbital Tower: a Spacecraft Launcher Using the Earth's Rotational Energy. Acta Astronautica 2, 785 (1975)
[3] Aravind, P. K. The physics of the space elevator. American Journal of Physics 75, 125 (2007).
[4] Bochníček, Z. A Carbon Nanotube Cable for a Space Elevator. The Physics Teacher 51, 462 (2013).

