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A. LUMPED ELEMENT MODEL OF A CO-AXIAL TRANSMISSION LINE

A.1 The speed of wave propagation in free space (c0 = 299 792 458m/s) is c0 = 1/
√
ε0 µ0. The speed in the dielectric

& diamagnetic medium is

v =
c0√
εr µr

(A.1)

A.2 Gauss law for the flux through a cylindrical surface with radius r co-axial with the the core, a < r < b:

∆x 2πr E(r) =
∆q

εrε0
⇒ E(r) =

∆q

∆x

1

2πεrε0r
(A.2)

A.3 The capacitance

Cx ∆x =
∆q

φ
(A.3)

where the potential φ of the core with respect to the shield is

0− φ = −
∫ b

a

E(r) dr ⇒ φ =
∆q

∆x

1

2πεrε0
ln

b

a
(A.4)

Cx =
2πεrε0

ln b
a

(A.5)

A.4 The magnetic flux through a rectangular contour paralel to the axis equal inductance times the current:

∆x

∫ b

a

B(r) dr = Lx ∆x I (A.6)

Biot-Savart law B(r) = µrµ0

2π
I
r gives

Lx =
µrµ0

2π
ln

b

a
(A.7)

A.5 i. Adding δx length of the cable should not change its impedance. Hence the impedance Z of the following
circuit must be equal to Z0:

1

Z
=

1

Z0 + jωδL
+

1
1

jωδC

=
1

Z0
(A.8)

Z2
0 + j ω δLZ0 − δL/δC = 0 (A.9)

(here engineering notation for j2 = −1 is used.) δL/δC = Lx/Cx and δL → 0 for δx → 0, hence

Z0 =
√
Lx/Cx (A.10)

ii.

Z0 =
√
Lx/Cx =

ln(b/a)

2π

√
µrµ0

εrε0
= ln(b/a)

√
µr

εr
× 59.96Ω (A.11)

For Z0 = 50Ω, εr = 4.0 and µr = 1.0 this gives b = 5.30 a .
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B. HYPOTHETICAL TRANSMISSION LINE WITH RETURN ALONG A GROUNDED PLANE

B.1 The high-conductance ground plate can be replaced by an image of the wire with opposite direction of the
current at distance 2d from the real wire. The magnetic fields from the real and the imaginary wires add up
and need to be integrated to get the magnetic flux between the wire and the plate:

Lx ∆x I =
µµ0

2π
I

∫ d

a

(
1

r
+

1

2d− r

)
dr∆x (B.1)

Lx =
µµ0

2π
ln

(
2d

a
− 1

)
≈ µµ0

2π
ln

2d

a
(B.2)

The potential difference between the wire and the plate can be obtained similarly by integrating the combined
field for the wire and its image:

φ =
∆q

∆x

1

2πεrε0

∫ d

a

(
1

r
+

1

2d− r

)
dr =

∆q

∆x

ln(2d/a)

2πεrε0
(B.3)

Cx =
∆q

∆x

1

φ
≈ 2πεrε0

ln(2d/a)
(B.4)

Hence the characterstic impedance Z0 =
√
Lx/Cx of the wire-plate system is

Z0 =
ln(2d/a)

2π

√
µrµ0

εrε0
(B.5)

C. BASICS OF RF REFLECTOMETRY

C.1 At the interface, values of the voltage on both transmission lines have to coincide:

Vi + Vr = Vt (C.1)

The current has to be conserved at the interface, however, the incident and the reflected waves carry the current
in opposite directions:

Vi

Z0
− Vr

Z0
=

Vt

Z1
(C.2)

It is clear from the equation above that Vt ̸= 0 if Z0 ̸= Z1 – impedance mismatch has to cause reflection. Solving
the voltage and the current equations for Γ = Vr/Vi gives

Γ =
Z1 − Z0

Z1 + Z0
(C.3)

C.2 A π-shift implies opposite signs of Vi and Vr and hence requires Γ < 0. This implies Z1 < Z0 .

D. THE SINGLE ELECTRON TRANSISTOR

D.1 i. Since any capacitance beyond Cg is neglected in our model, the quantum dot can be thought as a capacitor
plate with the gate being the other plate of the same capacitor with capacitance Cg. The fixed number n of
electrons trapped on the quantum dot sets a fixed-charge (q = −ne) boundary condition for the capacitor
Cg on the QD, while the gate side is kept at a constant potential Vg. (We denote the elementary charge
by e > 0). The implies that an excess charge of opposite sign, −q = ne will accumulate on the gate, to
keep electric field confined between the QD and the gate. The potential jump across the capacitor from
the gate to the QD will be equal to the capacitor q/Cg = −ne/Cg. Hence the potential on the QD is

φn = Vg +
−ne

Cg
(D.1)
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ii. Bringing an infinitesimal charge δq from potential 0 to potential φ(q) requires energy δE = φ(q)δq, and
the dependence of potential φ(q) on the accumulated charge q is linear. For the single-electron transfer,
the additional charge of the electron, −e, changes the potential from φn to φn+1 = φn − e/Cg. Hence the
work necessary to accumulate an extra e on the QD is the integral of δE

∆En = −e
φn + φn+1

2
(D.2)

∆En =
e2

Cg

(
n+

1

2

)
− eVg (D.3)

Alternatively, ∆En can be obtained from energy conservation, by computing the change of the energy of
the capacitor the dork the work done against the electromotive force of the battery (=−“work done by the
battery’) for a charge +e to be brought from the ground potential via the battery to the gate-side plate of
the capacitor:

∆En =
e2(n+ 1)2

2Cg
− e2n2

2Cg
− eVg (D.4)

Note that without Ct ≪ Cg approximation, the answer is ∆En = e2

Cg+2Ct

(
n+ 1

2

)
− eVgCg/(2Ct + Cg)

(not required to receive full marks).

D.2 N is a minimal integer n for which ∆En ≥ 0. Consider the marginal case of ∆EN = 0 which is achieved at
some Vg = V0,

∆EN (V0) = 0 =
e2

Cg

(
N +

1

2

)
− eV0 (D.5)

If Vg would go slightly larger than V0, then ∆En would go negative and then minimal n that makes a positive
∆En would jump from N to N + 1. Hence Ec = ∆EN+1(V0). This gives

∆EN+1(V0) = Ec =
e2

Cg

(
N + 1 +

1

2

)
− eV0 =

e2

Cg
(D.6)

D.3 In a metal, only electrons in an energy range ± ≈ kBT around the Fermi level take part in the thermal motion.
(Here kB is the Boltzmann constant.) Typical energy of these electrons is kBT per particle and it may not

exceed characteristic single-electron addition energy Ec, kBT < Ec .

D.4 i. τ = Rt Ct

ii. Quantum uncertainty of energy (life-time broadening) h/τ must be less than the energy difference between
the states with n and n+ 1 electrons,

h/τ < Ec ⇒
h

RtCt
<

e2

Cg
(D.7)

Rt >
h

e2
Cg

Ct
>

h

e2
(D.8)

E. RF REFLECTOMETRY TO READ OUT SET STATE

E.1

Γ =
ZSET − Z0

ZSET + Z0
(E.1)

ΓON =
105 − 50

105 + 50
≈ 1− 2

50

105
(E.2)

ΓOFF = lim
Z1→∞

Z1 − Z0

Z1 + Z0
= 1 (E.3)

∆Γ = |ΓON − ΓOFF| ≈ 1.0 · 10−3 (E.4)
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E.2 Large change in reflectance requires the impedance Z1 of the circuit to switch between Z1 < Z0 to Z1 > Z0 as
the SET between ON (ZSET = 100kΩ) and OFF (ZSET = ∞).

In the OFF state of the SET, the circuit is an disspationless LC contour with resonance frequency ω0 = 1/
√
L0C0

and its impedance is 0. If we choose

L0 =
1

ω2
rfC0

(E.5)

then the imedance of the ω0 = ωrf.

Since Ztot (the total impedance of the circuit) in the OFF state of the SET equals to 0, the reflectance i
ΓOFF = −1. As we switch to the ON state with ZSET = RSET = 105Ω, the change in reflectance will be large if
|Ztot| in this ON state is on the order of Z0 or larger, which is indeed the case.

For the ON state and ω0 = ωrf

Ztot =

(
1
1

j ω C0

+
1

RSET

)−1

+ j ωL0 =
RSET

1 + j ωC0 RSET
+ j ω L0 =

RSET + j
√

L0/C0

1 +R2
SETC0/L0

(E.6)

For C0 = 0.4 · 10−12 F, Z0 = 50Ω and ωrf = 2π · 108 Hz, we have L0 = 6.33µH , Ztot = (158 + 6.3 j)Ω,

ΓON = 0.5198 + 0.0145 j, and ∆Γ = 1.52 .

F. CHARGE SENSING WITH A SINGLE LEAD QUANTUM DOT

F.1 The SLQD readout circuit contains only reactive elements, so |Γ| = 1 will always be one. The OFF state of the
SLQD corresponds to an inductor L0 and a capacitor C0 connected in parallel. We again choose

ωrf = 1/
√

L0C0 (F.1)

so that Ztot is the OFF state is infinite and ΓOFF = 1.

The ON state corresponds to ZSET = −j 1
ωrfCq

and Ztot at ωrf = ω0 is just the impedance of the SLQD

Ztot =
1

(jωrfL0)−1 + jωrf(C0 + Cq)
= −j

1

ω0Cq
= −j

C0

Cq
ZC (F.2)

For the complex phase of ΓON = (Ztot−Z0)/(Ztot+Z0) to be significantly different from zero, we need |Ztot| ∼ Z0

since Ztot is purely imaginary. Hence

ZC ∼ Cq

C0
Z0 (F.3)

F.2 If L0 is fixed, we can still operate the circuit at the frequency

ωrf = 1/
√

L0C0 (F.4)

that gives ΓOFF = 1. However, we need to deduce a way to increase |Ztot| even if ZC ≪ CqZ0/C0 is not
sufficient. One of the ways to do that is to add an additional capacitance Cm is series with rest of the circuit.

This will give (at ωrf = ω0)

Ztot = −j

(
C0

Cq
ZC +

1

ω0Cm

)
= −jω−1

0

(
C−1

q + C−1
m

)
(F.5)

We can satisfy the condition |Ztot| = Z0 (and hence ΓON = j and ∆Γ =
√
2 ∼ 1) with

Cm =
Cq

Z0Cqωrf − 1
=

Cq

√
L0C0

Z0Cq −
√
L0C0

(F.6)

Cm =
CqZC

Z0Cq/C0 − ZC

ZC≪Z0Cq/C0

≈ 1

Z0 ωrf
(F.7)




