Theory
Question 3: Tippe Top
Solutions

Reference sheet for markers

Note: some results below were used for the previous version of part A.10, and are no longer needed.
Coordinate systems for convenience (note: use of matrices not needed) $x y z$ from $X Y Z$

$$
\left[\begin{array}{l}
\hat{\mathbf{x}} \\
\hat{\mathbf{y}} \\
\hat{\mathbf{z}}
\end{array}\right]=\left[\begin{array}{ccc}
\cos \phi & \sin \phi & 0 \\
-\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
\hat{\mathbf{X}} \\
\hat{\mathbf{Y}} \\
\hat{\mathbf{Z}}
\end{array}\right]
$$

123 from $x y z$

$$
\left[\begin{array}{c}
\hat{\mathbf{1}} \\
\hat{\mathbf{2}} \\
\hat{\mathbf{3}}
\end{array}\right]=\left[\begin{array}{ccc}
\cos \theta & 0 & -\sin \theta \\
0 & 1 & 0 \\
\sin \theta & 0 & \cos \theta
\end{array}\right]\left[\begin{array}{c}
\hat{\mathbf{x}} \\
\hat{\mathbf{y}} \\
\hat{\mathbf{z}}
\end{array}\right]
$$

Position of point A from centre of mass, in $x y z$ and 123 frames:

$$
\begin{align*}
\mathbf{a} & =\alpha R \hat{\mathbf{3}}-R \hat{\mathbf{z}} \tag{1}\\
& =\alpha R \sin \theta \hat{\mathbf{x}}+R(\alpha \cos \theta-1) \hat{\mathbf{z}} \\
& =R \sin \theta \hat{\mathbf{1}}+R(\alpha-\cos \theta) \hat{\mathbf{3}}
\end{align*}
$$

Useful products:

$$
\begin{equation*}
\hat{\mathbf{z}} \times \hat{\mathbf{3}}=\sin \theta \hat{\mathbf{y}} \tag{2}
\end{equation*}
$$

Note (given in question):

$$
\begin{equation*}
\left(\frac{\partial \mathbf{A}}{\partial t}\right)_{\mathbf{K}}=\left(\frac{\partial \mathbf{A}}{\partial t}\right)_{\widetilde{\mathbf{K}}}+\boldsymbol{\omega} \times \mathbf{A} \tag{4}
\end{equation*}
$$

Time derivatives:

$$
\begin{align*}
& \dot{\hat{\mathbf{3}}}=\boldsymbol{\omega} \times \hat{\mathbf{3}} \tag{5}\\
& \dot{\hat{\mathbf{x}}}=\dot{\phi} \hat{\mathbf{y}} \tag{6}\\
& \dot{\hat{\mathbf{y}}}=-\dot{\phi} \hat{\mathbf{x}} \tag{7}
\end{align*}
$$

Solutions: Tippe Top

1. (1.0 marks)

Free body diagrams:

Note: the direction of \mathbf{F}_{f} must be opposite to the direction of \mathbf{v}_{A}, but is otherwise unimportant. Sum of forces:

$$
\begin{align*}
\mathbf{F}_{\mathrm{ext}} & =(N-m g) \hat{z}+\mathbf{F}_{f} \quad(\text { sufficient for full marks) } \tag{8}\\
& =(N-m g) \hat{z}-\frac{\mu_{k} N}{\left|v_{A}\right|} \mathbf{v}_{\mathbf{A}}
\end{align*}
$$

Sketched $\mathbf{v}_{\mathbf{A}}$ must be in opposite direction to \mathbf{F}_{f} on $x y$ diagram.

2. (0.8 marks)

Sum of torques:

$$
\begin{align*}
\boldsymbol{\tau}_{\text {ext }} & =\mathbf{a} \times\left(N \hat{\mathbf{z}}+\mathbf{F}_{f}\right) \tag{9}\\
& =(\alpha R \hat{\mathbf{3}}-R \hat{\mathbf{z}}) \times\left(N \hat{\mathbf{z}}+F_{f, x} \hat{\mathbf{x}}+F_{f, y} \hat{\mathbf{y}}\right) \\
& =\alpha R N \hat{\mathbf{3}} \times \hat{\mathbf{z}}+\alpha R(\sin \theta \hat{\mathbf{x}}+\cos \theta \hat{\mathbf{z}}) \times\left(F_{f, x} \hat{\mathbf{x}}+F_{f, y} \hat{\mathbf{y}}\right)-R \hat{\mathbf{z}} \times\left(F_{f, x} \hat{\mathbf{x}}+F_{f, y} \hat{\mathbf{y}}\right) \\
& =-\alpha R N \sin \theta \hat{\mathbf{y}}+\alpha R \sin \theta F_{f, y} \hat{\mathbf{z}}+\alpha R \cos \theta F_{f, x} \hat{\mathbf{y}}-\alpha R \cos \theta F_{f, y} \hat{\mathbf{x}}-R F_{f, x} \hat{\mathbf{y}}+R F_{f, x} \hat{\mathbf{x}} \\
& =R F_{f, y}(1-\alpha \cos \theta) \hat{\mathbf{x}}+\left[R F_{f, x}(\alpha \cos \theta-1)-\alpha R N \sin \theta\right] \hat{\mathbf{y}}+\alpha R \sin \theta F_{f, y} \hat{\mathbf{z}} \tag{10}
\end{align*}
$$

3. (0.4 marks)

Motion at A satisfies

$$
\begin{equation*}
\mathbf{v}_{\mathbf{A}}=\dot{\mathbf{s}}+\boldsymbol{\omega} \times \mathbf{a} \tag{11}
\end{equation*}
$$

where $\boldsymbol{\omega}$ is the total angular velocity of the top in the centre of mass frame (this is deteremined in the next part). Want to show that $\mathbf{v}_{\mathbf{A}} \cdot \hat{\mathbf{z}}=0$.

To show this, take time derivative of contact condition in $X Y Z$ or $x y z$ frame (note: either is suitable, as
we only need the $\hat{\mathbf{z}}$ component, and $\hat{\mathbf{z}}=\hat{\mathbf{Z}}$).
Contact condition:

$$
\begin{array}{rll}
(\mathbf{s}+\mathbf{a}) \cdot \hat{\mathbf{z}}=0 & \text { at all times } \tag{12}\\
\Rightarrow \frac{d}{d t}(\mathbf{s}+\mathbf{a}) \cdot \hat{\mathbf{z}}=0 & \text { at all times }
\end{array}
$$

Note we only care about the z-component, and $(\boldsymbol{\omega} \times \hat{\mathbf{z}}) \cdot \hat{\mathbf{z}}=0$. Then, using 11,1 , and 5 ,

$$
\begin{align*}
\mathbf{v}_{\mathbf{A}} \cdot \hat{\mathbf{z}} & =(\dot{\mathbf{s}}+\boldsymbol{\omega} \times \mathbf{a}) \cdot \hat{\mathbf{z}} \\
& =(\dot{\mathbf{s}}+\alpha R \boldsymbol{\omega} \times \hat{\mathbf{3}}) \cdot \hat{\mathbf{z}} \\
& =\left(\dot{\mathbf{s}}+\alpha R \frac{d \hat{\mathbf{3}}}{d t}\right) \cdot \hat{\mathbf{z}} \\
& =(\dot{\mathbf{s}}+\dot{\mathbf{a}}) \cdot \hat{\mathbf{z}}=0 \tag{13}
\end{align*}
$$

4. (0.8 marks)

Total angular velocity $\boldsymbol{\omega}$ of top is the sum of three distinct rotations:

$$
\boldsymbol{\omega}=\dot{\theta} \hat{\mathbf{2}}+\dot{\phi} \hat{\mathbf{z}}+\dot{\psi} \hat{\mathbf{3}}
$$

Use transformations shown in figure 3 or otherwise to transform into $x y z$ or 123 frame:

$$
\begin{align*}
\boldsymbol{\omega} & =\dot{\psi} \sin \theta \hat{\mathbf{x}}+\dot{\theta} \hat{\mathbf{y}}+(\dot{\psi} \cos \theta+\dot{\phi}) \hat{\mathbf{z}} \tag{14}\\
\boldsymbol{\omega} & =-\dot{\phi} \sin \theta \hat{\mathbf{1}}+\dot{\theta} \hat{\mathbf{2}}+(\dot{\psi}+\dot{\phi} \cos \theta) \hat{\mathbf{3}} \tag{15}
\end{align*}
$$

5. (1.0 marks)

Where \mathbf{I} is the inertia tensor

$$
\left[\begin{array}{ccc}
I_{1} & 0 & 0 \\
0 & I_{1} & 0 \\
0 & 0 & I_{3}
\end{array}\right]
$$

we have

$$
\begin{aligned}
E_{T} & =K_{T}+K_{R}+U_{G} \\
& =\frac{1}{2} \boldsymbol{\omega} \cdot \mathbf{I} \boldsymbol{\omega}+\frac{1}{2} m \dot{\mathbf{s}}^{2}+m g R(1-\alpha \cos \theta)
\end{aligned}
$$

From 11,

$$
\begin{aligned}
\dot{\mathbf{s}} & =\mathbf{v}_{\mathbf{A}}-\boldsymbol{\omega} \times \mathbf{a} \\
& =\mathbf{v}_{\mathbf{A}}-(\dot{\theta} \hat{\mathbf{2}}+\dot{\phi} \hat{\mathbf{z}}+\dot{\psi} \hat{\mathbf{3}}) \times(\alpha R \hat{\mathbf{3}}-R \hat{\mathbf{z}}) \\
& =v_{x} \hat{\mathbf{x}}+v_{y} \hat{\mathbf{y}}-(\dot{\theta} \alpha R \hat{\mathbf{1}}-\dot{\theta} R \hat{\mathbf{z}}+\dot{\phi} \alpha R \hat{\mathbf{z}} \times \hat{\mathbf{3}}-\dot{\psi} R \hat{\mathbf{3}} \times \hat{\mathbf{z}}) \\
& =\left(v_{x}+\dot{\theta} R(1-\alpha \cos \theta)\right) \hat{\mathbf{x}}+\left(v_{y}-R \sin \theta(\alpha \dot{\phi}+\dot{\psi})\right) \hat{\mathbf{y}}+\dot{\theta} \alpha R \sin \theta \hat{\mathbf{z}}
\end{aligned}
$$

using 2. Thus

$$
\begin{aligned}
E_{T} & =\frac{1}{2}\left[I_{1}\left(\dot{\phi}^{2} \sin ^{2} \theta+\dot{\theta}^{2}\right)+I_{3}(\dot{\psi}+\dot{\phi} \cos \theta)^{2}\right] \\
& +\frac{m}{2}\left[\left(v_{x}+\dot{\theta} R(1-\alpha \cos \theta)\right)^{2}+\left(v_{y}-R \sin \theta(\alpha \dot{\phi}+\dot{\psi})\right)^{2}+\dot{\theta}^{2} \alpha^{2} R^{2} \sin ^{2} \theta\right]+m g R(1-\alpha \cos \theta)
\end{aligned}
$$

6. (0.4 marks)

From 10,

$$
\begin{equation*}
\frac{d \mathbf{L}}{d t} \cdot \hat{\mathbf{z}}=\sum \boldsymbol{\tau} \cdot \hat{\mathbf{z}}=\alpha R \sin \theta F_{f, y} \tag{16}
\end{equation*}
$$

7. (1.4 marks)

Changes in energy: $h=\mathbf{s} \cdot \hat{\mathbf{z}}$ increases, so $\dot{U}_{G}>0$.
At start and end (phases I and \mathbf{V}) there is little translation so $K_{T} \sim 0$ at \mathbf{I} and \mathbf{V}. Thus, energy transfer is from K_{R} to U_{G}.

Normal force does no work. Frictional force does work at point A. Direction is $-\mathbf{v}_{\mathbf{A}}$:

$$
\begin{aligned}
W & =\int \mathbf{F}_{f} \cdot \mathbf{v}_{\mathbf{A}} d t<0 \\
\Rightarrow \frac{d}{d t} E_{T} & =-\mu_{k} N\left|\mathbf{v}_{\mathbf{A}}\right|
\end{aligned}
$$

Thus \mathbf{F}_{f} decreases the total energy monotonically.
16 implies only the $\mathbf{F}_{f} \cdot \hat{\mathbf{y}}$ acts to decrease $\mathbf{L} \cdot \hat{\mathbf{z}}$. Energy transfer from K_{R} to U_{G}, caused by component of frictional force in $\hat{\mathbf{y}}$ direction, so component of resultant torque is in the $\mathbf{a} \times \hat{\mathbf{y}}$ direction.

8. (2.0 marks)

Expectation (see figure):

- E_{T} : monotonically decreasing
- K_{R} : monotonically decreasing; zero at V
- K_{T} : zero at I and V ; higher between; close to zero at IV
- U_{G} : flat at start and finish; higher at end; increases from I to IV then flat; increase roughly at same time that $K_{\text {rot }}$ decreases

9. (0.5 marks)

From 15,

$$
\begin{equation*}
\mathbf{L}=\mathbf{I} \boldsymbol{\omega}=I_{1}(-\dot{\phi} \sin \theta \hat{\mathbf{1}}+\dot{\theta} \hat{\mathbf{2}})+I_{3}(\dot{\psi}+\dot{\phi} \cos \theta) \hat{\mathbf{3}} \tag{17}
\end{equation*}
$$

Taking cross product with $\hat{\mathbf{3}}$:

$$
\begin{align*}
\mathbf{L} \times \hat{\mathbf{3}} & =I_{1}(\dot{\phi} \sin \theta \hat{\mathbf{2}}+\dot{\theta} \hat{\mathbf{1}}) \\
& =I_{1}(\boldsymbol{\omega} \times \hat{\mathbf{3}}) \tag{18}
\end{align*}
$$

10. ($\mathbf{1 . 7}$ marks)

About any axis through the centre of mass,

$$
\frac{d \mathbf{L}}{d t} \neq 0 \Leftrightarrow \tau_{\mathrm{ext}} \neq 0
$$

External torque given by 9 ,

$$
\begin{gathered}
\boldsymbol{\tau}_{\mathrm{ext}}=\mathbf{a} \times\left(N \hat{\mathbf{z}}+\mathbf{F}_{f}\right) \\
\quad \Rightarrow \tau_{\mathrm{ext}} \cdot \mathbf{a}=0 \\
\frac{d \mathbf{L}}{d t} \cdot \mathbf{a}=0
\end{gathered}
$$

Thus, angular momentum in the direction of \mathbf{a} must be constant, so $\mathbf{v}=\mathbf{a}$.

To demonstrate this mathematically, 5, 10, 18 allow

$$
\begin{aligned}
-\dot{\lambda} & =\frac{d \mathbf{L}}{d t} \cdot \mathbf{a}+\alpha R \mathbf{L} \cdot \frac{d \hat{3}}{d t} \\
& =\left(\mathbf{a} \times\left(N \hat{\mathbf{z}}+\mathbf{F}_{\mathbf{f}}\right)\right) \cdot \mathbf{a}+\frac{\alpha R}{I_{1}} \mathbf{L} \cdot(\boldsymbol{\omega} \times \mathbf{L}) \\
& =0
\end{aligned}
$$

