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Ray tracing and generation of entangled light

Useful formula:

⃗𝐴 × (�⃗� × ⃗𝐶) = �⃗� ( ⃗𝐴 ⋅ ⃗𝐶) − ⃗𝐶 ( ⃗𝐴 ⋅ �⃗�)

Introduction

Let ⃗𝐸 represent the electric field, �⃗� the magnetic field, �⃗� the electric displacement, and �⃗� the magnetic
induction. Wehave �⃗� = 𝜖0 ⃗𝐸+ ⃗𝑃 , with ⃗𝑃 being the polarization of themediumand 𝜖0 being the permittivity
of free space. Only nonmagnetic dielectric media are considered in this problem, hence �⃗� = 𝜇0�⃗�, with
𝜇0 being the permeability of free space. The energy density and energy flow density associated with the
electromagnetic field are given by 𝑢𝑒𝑚 = 1

2 ( ⃗𝐸 ⋅ �⃗� + �⃗� ⋅ �⃗�) and Poynting's vector ⃗𝑆 = ⃗𝐸 × �⃗�, respectively.

In homogeneous dielectric media, a monochromatic plane wave of light can be described by its angular
frequency 𝜔, wave vector �⃗�, �⃗�, and �⃗�. According to Maxwell’s equations, we have �⃗� × ⃗𝐸 = 𝜔�⃗� and
�⃗� × �⃗� = −𝜔�⃗�. For such a wave, variations of �⃗� and �⃗� with position ⃗𝑟 and time 𝑡 are given by sinusoidal
functions of the phase (�⃗� ⋅ ⃗𝑟 − 𝜔𝑡).

Part A. Light propagation in isotropic dielectric media (1.0 points)

If the medium is isotropic, we have ⃗𝑃 = 𝜒𝜖0 ⃗𝐸 and �⃗� = 𝜖 ⃗𝐸, with 𝜒 and 𝜖 = 𝜖0(1 + 𝜒) being the electric
susceptibility and permittivity, respectively, of the medium. For a light wave of angular frequency 𝜔 in
such a medium, a given phase will propagate in the direction �⃗� with a velocity (called phase velocity)
𝑣𝑝 = 𝑐/𝑛. Here 𝑐 is the speed of light in vacuum and 𝑛 is the refractive index of the medium. One can
also use rays to represent a train of light waves. The propagation of a light ray is characterized by the
direction and speed 𝑣𝑟 of the electromagnetic energy flow.

Consider a plane wave of light with angular frequency 𝜔 and wave vector �⃗� in a homogeneous isotropic
dielectric medium.

A.1 Express its phase velocity 𝑣𝑝 in terms of 𝜖 and 𝜇0. 0.4pt

A.2 What is the refractive index 𝑛 of the dielectric medium for the wave? 0.2pt

A.3 What are the direction ̂𝑆 ≡ ⃗𝑆/𝑆 and speed 𝑣𝑟 of its electromagnetic energy flow? 0.4pt

Part B. Light propagation in uniaxial dielectric media (4.8 points)
We now assume the dielectric medium to be uniaxial, i.e, it is electrically anisotropic along a special
direction fixed in the medium, called the optic axis, which we presently call it the 𝑧 direction. In such a
case, the displacement �⃗� and the electric field ⃗𝐸 are related by𝐷𝑥 = 𝜖𝐸𝑥, 𝐷𝑦 = 𝜖𝐸𝑦, and𝐷𝑧 = 𝜖′𝐸𝑧, where
𝑥, 𝑦, and 𝑧 axes are mutually orthogonal. Consequently, the phase velocity of a light wave is anisotropic
and depends additionally on the directions of �⃗� and �⃗�. Let 𝑛𝑜 = 𝑐√𝜇0𝜖 and 𝑛𝑒 = 𝑐√𝜇0𝜖′, answer the
followings questions: B.1, B.2, and B.3.
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B.1 Suppose the wave vector �⃗� of a monochromatic plane light wave is in the 𝑥𝑧
plane so that �⃗� = 𝑘(sin 𝜃, 0, cos 𝜃). At each angle 𝜃, what directions of �⃗� and
�⃗� are permissible for the light wave? Find all possible refractive indices and
express the refractive indices in terms of 𝜃, 𝑛𝑜, and 𝑛𝑒. Find the angle 𝜃 for
which only one value is permitted for the refractive index.

1.5pt

B.2 The polarization of a light wave, i.e., the direction of its electric field ⃗𝐸, can be
either perpendicular (called an ordinary wave or ray ) or parallel (called an ex-
traordinary wave or ray) to the 𝑥𝑧 plane. For each of the light waves you found
in B.1, specify its polarization as a unit vector and indicate whether it is an ordi-
nary or extraordinary wave. Also compute tan𝛼, where 𝛼 is the angle between

⃗𝐸 and �⃗� (𝛼 is positive when going from ⃗𝐸 to �⃗� is clockwise).

0.8pt

B.3 Extend the results in B.1 and B.2 to the general case when the angle between �⃗�
and the positive 𝑧 direction is still 𝜃, but �⃗� is not in the 𝑥𝑧 plane. Find all possible
values of the refractive indices and the corresponding polarizations.

0.6pt

In a uniaxial medium, the direction of �⃗� of a light wave may differ from the direction of the light ray. The
phase velocity of the wave is still given by 𝑐/𝑛 with 𝑛 being the refractive index along �⃗�, while the ray
velocity is defined jointly by the direction and the rate of energy flow.

B.4 Following problems B.1-3, consider a light wave with �⃗� = 𝑘(sin 𝜃, 0, cos 𝜃). Let
the angle between �̂� ≡ �⃗�/𝑘 and the direction of the ray, ̂𝑆, be 𝛼𝑟 (𝛼𝑟 is positive
when going from ̂𝑆 to �̂� is clockwise). Find all possible values of tan𝛼𝑟, speed 𝑣𝑟
of the ray and ̂𝑆. Using these results, express the ray index 𝑛𝑠 = 𝑐/𝑣𝑟 in terms
of ̂𝑆, ̂𝑥, ̂𝑧, 𝑛𝑜, and 𝑛𝑒.

0.8pt

Consider the propagation of a light ray from A to B through an interface between an isotropic medium,
labelled 1, and an anisotropic medium, labelled 2, as shown in Fig. 1. The interface coincides with the
𝑦𝑧 plane, while the plane of incidence is the 𝑥𝑧 plane. Let the angle of incidence be 𝜃1. The refractive
index of medium 1 is 𝑛, while the refractive indices of medium 2 for axes 𝑧2, 𝑦2, 𝑥2 are 𝑛𝑒, 𝑛𝑜, and 𝑛𝑜,
respectively. Here 𝑦2 axis coincides with 𝑦 axis. Fermat’s principle states that the propagation time for
the path that the light ray goes from A to B is a minimum. For light with polarization parallel to 𝑥𝑧 plane
and incident at the angle 𝜃1, Fermat’s principle leads to the following equation:

̄𝐴(tan 𝜃2)2 + �̄� tan 𝜃2 + ̄𝐶 = 0 (1)

B.5 Find ̄𝐴, �̄�, and ̄𝐶 in terms of 𝑃1, 𝑃2, 𝑃3, and 𝑛 sin 𝜃1, where 𝑃1 = 𝑛2
𝑜 cos2 𝜙 +

𝑛2
𝑒 sin

2 𝜙, 𝑃2 = 𝑛2
𝑜 sin

2 𝜙 + 𝑛2
𝑒 cos2 𝜙, and 𝑃3 = (𝑛2

𝑜 − 𝑛2
𝑒) sin𝜙 cos𝜙. From Eq. (1),

find corresponding tan 𝜃2 to two special orientations: 𝜙 = 0 and 𝜙 = 𝜋/2.

1.1pt
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Fig. 1: Propagation of light from A to B through an interface between an isotropic medium 1
and an anisotropic medium 2.

Part C. Entanglement of light (4.2 points)

In a nonlinear medium, the electric field ⃗𝐸 is related to the polarization ⃗𝑃 by 𝑃𝑖 = (𝜖 − 𝜖0)𝐸𝑖 +
∑𝑗 ∑𝑘 𝜒(2)

𝑖𝑗𝑘𝐸𝑗𝐸𝑘. Here 𝑖, 𝑗, 𝑘 each can be any one of the three components 𝑥, 𝑦, 𝑧, and 𝜒(2)
𝑖𝑗𝑘 are constants

representing the second-order nonlinear susceptibility of the medium. Non-vanishing of 𝜒(2)
𝑖𝑗𝑘 implies

that as a light wave travels through a nonlinear medium, it can split into two light waves.

Suppose that because 𝜒(2)
𝑖𝑗𝑘 are not all zero, the electric field in the medium is made up of a superposition

of three plane waves of angular frequencies 𝜔, 𝜔1, and 𝜔2, propagating with wave vectors �⃗�, �⃗�1, and �⃗�2,
respectively. Assume 𝜔 ≥ 𝜔2 and 𝜔1 ≥ 𝜔2.

C.1 Find all possible relations (known as the phase matching conditions) between
these angular frequencies andwave vectors. Viewing light as composed of pho-
tons, what kinds of conservation laws do these conditions imply for the three
photons involved? Write down equations expressing these conservation laws
for the case that a photon with angular frequency 𝜔 and wave vector �⃗� being
split into two photons of angular frequencies 𝜔1and 𝜔2, propagating with wave
vectors �⃗�1and �⃗�2, respectively.

0.8pt

C.2 Consider a light wave in a uniaxial medium. Denote an ordinary ray as o and an
extraordinary ray as e. There are 8 possible ways of splitting for the light wave:
o → o + o, o → e + o, o → o + e, o → e + e, e → o + o, e → e + o, e → o + e,
and e → e + e. Assume that the refractive indices 𝑛𝑜 and 𝑛𝑒 are both increasing
functions of 𝜔. Using the same notations for wave vectors as in problem C.1
and considering the case that �⃗�, �⃗�1, and �⃗�2 are collinear, indicate which of the 8
ways of splitting are not possible.

0.8pt

Consider an incoming e ray traveling along 𝑧′ direction with wave vector �⃗� and 𝜔 = Ω𝑝 in an uniaxial
mediumwith refractive index 𝑛𝑒 < 𝑛𝑜. Suppose that, in a collinear splitting e→e + o, the phase-matching
conditions are realized with 𝑘1 = 𝐾𝑒, 𝜔1 = Ω𝑒, 𝑘2 = 𝐾𝑜, and 𝜔2 = Ω𝑜. Here subscripts 1 and 2 refer to e ray
and o ray. �⃗�1, �⃗�2 and �⃗� all point in the 𝑧′direction. As shown in Fig. 2(a), the optic axis (OA) of the medium
lies in the 𝑥′𝑧′ plane and makes an angle 𝜃 < 𝜋/2 with the 𝑧′ axis. Therefore, 𝑛𝑒 is a function of 𝜔 and 𝜃,
i.e., 𝑛𝑒 = 𝑛𝑒(𝜔, 𝜃). For the same incoming e ray with wave vector �⃗� and 𝜔 = Ω𝑝, suppose its non-collinear
splitting into e + o rays causes the latter two rays to separate but remain on two cones with 𝜔1 = 𝜔2 = Ω,
𝑘1 = 𝑘2, as shown in Fig. 2(b). Note that in the collinear splitting, Ω𝑒 is already close to Ω𝑜, and here Ω is
only slightly less than Ω𝑒. In a plane perpendicular to �⃗�, two circles on the cones for �⃗�1 and �⃗�2 intersect
at points 𝑎 and 𝑏 with the line 𝑎𝑏 parallel to 𝑦′axis. As shown in Fig. 2(a), �⃗�𝛼(𝛼 = 1, 2 ) makes an angle 𝜃𝛼



Theory

Q2-4
English (Official)

with the optic axis and has angular coordinates (𝜓𝛼, 𝜙𝛼) with �⃗�𝛼⟂ being its projection in the 𝑥′𝑦′ plane.
Each vector �⃗�𝛼 deviates from 𝑧′ axis only slightly so that |(Ω − Ω𝑒)/Ω𝑒| ≪ 1, |�⃗�𝛼⟂|/𝑘𝛼 ≪ 1 and |𝜃𝛼 − 𝜃| ≪ 1.
Using approximations which agree with the 𝑧′ component of �⃗�𝛼 to terms of the order 𝑘2

𝛼⟂ and the angle
𝜃𝛼 to (𝜃𝛼 − 𝜃)2, one finds that �⃗�2⟂ = (𝑞𝑥′ , 𝑞𝑦′) must satisfy 𝑀(𝑞𝑥′ + 𝑁)2 + 𝑀𝑞2

𝑦′ = 𝐿.

C.3 Let 𝑀 > 0. Evaluate 𝑀 , 𝑁 , and 𝐿 in terms of Ω, Ω𝑒, Ω𝑜, 𝐾𝑒, 𝐾𝑜 and 𝑁𝑒(𝜔, 𝜃) =
1

𝑛𝑒(𝜔,𝜃)
𝑑𝑛𝑒(𝜔,𝜃)

𝑑𝜃 and the group velocities 𝑢𝑜 = 𝑑𝑤2
𝑑𝑘2

and 𝑢𝑒 = 𝑑𝜔1
𝑑𝑘1

for theo and e rays.
Estimate the angle between the axis of the cone and 𝑧′, and also the angle of
the cone in terms of 𝐿, 𝑀 , 𝑁 and 𝐾𝑜.

1.3pt

Fig. 2: (a) Vector �⃗�𝛼 has angular coordinates (𝜓𝛼, 𝜙𝛼) in the 𝑥′𝑦′𝑧′ coordinate system with �⃗�𝛼⟂
being its projection in the 𝑥′𝑦′ plane. Note that �⃗�𝛼 makes an angle 𝜃𝛼 with OA. (b) Non-collinear
splitting of an e ray into e + o rays that form two cones. Line 𝑎𝑏 is parallel to the 𝑦′ axis.

Problem C.3 shows that a photon may split into two photons which when passing through points a and
b are polarized in perpendicular directions. These two photons are called entangled photon pair because
if one photon that passes 𝑎 (called 𝑎-photon) is polarized in a direction ̂𝑥′, the other that passes 𝑏 (called
𝑏-photon) will be polarized in the direction ̂𝑦′ ⟂ ̂𝑥′, and if the 𝑎-photon is polarized in ̂𝑦′, then the 𝑏-
photon will be polarized in ̂𝑥′. The entangled photon-pair state can be prepared experimentally. It is a
superposition of the above two alternative states and can be expressed as 1√

2 (| ̂𝑥′
𝑎⟩| ̂𝑦′

𝑏⟩ + | ̂𝑦′
𝑎⟩| ̂𝑥′

𝑏⟩). Here
| ̂𝑥′

𝑎⟩| ̂𝑦′
𝑏⟩represents the state when 𝑎-photon is polarized in ̂𝑥′ direction and 𝑏-photon is polarized in ̂𝑦′ di-

rection; similar meaning applies to | ̂𝑦′
𝑎⟩| ̂𝑥′

𝑏⟩. The coefficient 1/
√

2 can be viewed as the product of electric
field amplitudes (expressed in suitable units) of 𝑎- and 𝑏-photons. As illustrated in Fig. 3, two linear polar-
izers 1 and 2 have transmission axes at angles 𝛼 and 𝛽 respectively with respect to ̂𝑥′. We may use them
to perform coincidence measurement on the two photons that pass 𝑎 and 𝑏. Let the probability of simul-
taneously finding two photons passing through polarizers 1 and 2 be 𝑃(𝛼, 𝛽). Alternatively, 𝑃(𝛼, 𝛽) can
also be regarded as being proportional to the product of intensities (after appropriate superpositions)
of light passing through the two polarizers. Denote 𝛼 + 𝜋/2 and 𝛽 + 𝜋/2 by 𝛼⟂ and 𝛽⟂ respectively.

Fig. 3: Two linear polarizers 1 and 2 for coincidence measurement of photons that pass 𝑎 and
𝑏.
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C.4 Consider the total electric field projected by linear polarizers. Find the proba-
bilities 𝑃(𝛼, 𝛽), 𝑃(𝛼, 𝛽⟂), 𝑃(𝛼⟂, 𝛽), and 𝑃(𝛼⟂, 𝛽⟂).

0.8pt

C.5 Assign 𝜎𝑎 = 1 when polarizer 1 with angle 𝛼 finds an 𝑎-photon and 𝜎𝑎 = −1
when polarizer 1 with angle 𝛼⟂ finds an 𝑎-photon. Similarly, 𝜎𝛽 = 1 or −1 is
assignedwhen polarizer 2with angle 𝛽 or 𝛽⟂ finds a 𝑏-photon. If𝐸(𝛼, 𝛽) denotes
the average of 𝜎𝑎𝜎𝑏, the quantity 𝑆 = |𝐸(𝛼, 𝛽) − 𝐸(𝛼, 𝛽′)| + |𝐸(𝛼′, 𝛽) + 𝐸(𝛼′, 𝛽′)|
has important meaning. For classical theories of light, 𝑆 ≤ 2. This is a variant
form of Bell’s inequality (the Clauser-Horne-Shimony-Holt inequality). Find the
expression of 𝑆 and evaluate 𝑆 for the case 𝛼 = 𝜋

4 ,𝛼′ = 0 , 𝛽 = − 𝜋
8 , 𝛽′ = 𝜋

8 .
Indicate if 𝑆 is consistent with the classical theories.

0.5pt


