
Theoretical Question 2: Ray tracing and generation of entangled light

Part A. Light propagation in isotropic dielectric media

A.1 0.4 pt

Ans: 1√
µ0ε

Solution:

From ~k× ~E = ω ~B = ωµ0
~H and ~k× ~H = −ω ~D, one obtains ~k×(~k× ~E) = −ω2µ0

~D. By using

the given identity ~A× ( ~B× ~C) = ~B( ~A · ~C)− ~C( ~A · ~B), one finds ~k× (~k× ~E) = ~k(~k · ~E)−k2 ~E.

Since ~D · ~k = 0 and ~D = ε ~E, we find ~k × (~k × ~E) = −k2 ~E and the relation

~k × (~k × ~E) = −ω2µ0
~D reduces to −k2 ~E = −ω2µ0ε ~E.

Now the phase delocity is determined by d(~k·~r−ωt)
dt

= 0, we find that the phase velocity

~vp = d~r
dt

= ω
k
k̂. Clearly, we have ω

k
= 1√

µ0ε
. Hence vp = 1√

µ0ε
.

A.2 0.2 pt

Ans: c
√
µ0ε

Solution:

From vp = 1√
µ0ε

= c
n
, we find n = c

√
µ0ε

A.3 0.4 pt

Ans: k̂, vr = vp = 1√
µ0ε

Solution:

To find the speed of the ray, we first note that the direction of the energy flow, given by

the Poynting vector ~S = ~E × ~H, is in the same direction of ~k. The electromagnetic energy

density u = ue + um with ue = 1
2
~E · ~D and um = 1

2
~B · ~H.

Now, from ~k× ~H = −ω ~D, one has ~D = − 1
vp
k̂× ~H. Hence ue = − 1

2vp
~E · k̂× ~H = 1

2vp
k̂ · ~E× ~H.

Similarly, from ~k× ~E = ω ~B, we find um = 1
2vp

~B · k̂× ~E = 1
2vp
k̂ · ~E× ~H. Hence u = 1

vp
k̂ · ~E× ~B.

We find vr = S/u = vp = 1√
µ0ε

.

Part B. Light propagation in in uniaxial dielectric media

B.1 1.5pt

Ans: n = no, B̂ = ±k̂ × ŷ = ±(− cos θ, 0, sin θ), D̂ = ±ŷ or n = none√
n2
o sin2 θ+n2

e cos2 θ
, B̂ = ±ŷ,

D̂ = ±ŷ × k̂ = ±(cos θ, 0,− sin θ). For θ = 0, there is only one permitted value for the

refractive index

Solution:

From ~k × ~E = ωµ0
~H and ~k × ~H = −ω ~D, one obtains ~k × (~k × ~E) = −ω2µ0

~D. Writing out
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components and using ω = c
n
k, we find

− cos2 θEx + cos θ sin θEz = −n
2
o

n2
Ex,

− cos2 θEy − sin2 θEy = −n
2
o

n2
Ey,

− sin2 θEz + cos θ sin θEx = −n
2
e

n2
Ez.

After a bit rearrangement, we obtain (
1− n2

o

n2

)
Ey = 0(

n2
o

n2
− cos2 θ

)
Ex + cos θ sin θEz = 0

cos θ sin θEx +

(
n2
o

n2
− sin2 θ

)
Ez = 0.

The vanishing of the determinant yields(
1− n2

o

n2

)[
(
n2
o

n2
− cos2 θ)(

n2
e

n2
− sin2 θ)− sin2 θ cos2 θ

]
= 0. (1)

Clearly, for a general θ, we have two solutions for n:

(1) n = no

In this case, Ex = Ez = 0. ~E is parallel to the y axis. From ~k × ~E = ω ~B and ~k × (µ0
~B) =

−ω ~D, we obtain the directions of ~B and ~D as B̂ = ±k̂ × ŷ = ±(− cos θ, 0, sin θ) and

D̂ = −k̂ × B̂ = ±(0, 1, 0) = ±ŷ.

(2) (n
2
o

n2 − cos2 θ)(n
2
e

n2 − sin2 θ)− sin2 θ cos2 θ = 0.

After rearrangement, we find n = none√
n2
o sin2 θ+n2

e cos2 θ
. Clearly, at θ = 0, n = no, there is only

one refractive index. This is the direction of the optic axis.

In this case, Ey = 0. Hence ~E lies in the xz plane. Hence the relation ~k × ~E = ω ~B implies

B̂ = ±ŷ. The relation ~k × (µ0
~B) = −ω ~D implies D̂ = ±ŷ × k̂.

B.2 0.8 pt

Ans: (1) when n = no, Ê = ±ŷ and this is an ordinary ray. tanα = 0.

(2) when n = none√
n2
o sin2 θ+n2

e cos2 θ
, Ê = ± 1√

n4
e cos2 θ+n4

o sin2 θ
(−n2

e cos θ, 0, n2
o sin θ) and this is an

extraordinary ray. tanα = (n2
o−n2

e) tan θ
n2
e+n2

o tan2 θ
.

Solution:

(1) For n = no, both ~E and ~D are parallel to the y axis. This is an ordinary ray with

tanα = 0.

2



(2) For n = none√
n2
o sin2 θ+n2

e cos2 θ
, n 6= no, Ey = 0. By substituting n back into the equations of

Ex and Ez, we find that n2
o

n2
e

sin θEx + cos θEz = 0. Hence the electric field lies in xz plane

with Ê = ± 1√
n4
e cos2 θ+n4

o sin2 θ
(−n2

e cos θ, 0, n2
o sin θ) ( ~B points in ∓y direction.). Therefore,

~E is not perpendicular to ~k and lies in the xz plan in together with ~D and ~k. This is the

extraordinary ray.

Since ~k × ~H = −ω ~D, ~D is perpendicular to k̂. Hence D̂ = ±(− cos θ, 0, sin θ). Let ~B = ŷ,

the relative orientation of ~E and ~D for a given θ are shown in the following figure for the

case when ne < no.

x

z

B

!𝑘

𝜃 𝐷 ⊥ $𝑘

𝛼 𝐷
𝐸

X

Let the angle relative to x axis be θ1 and θ2 for ~E and ~D. We have tan θ2 = − tan θ and

tan θ1 = −n2
o

n2
e

tan θ. Hence tanα = tan(θ2 − θ1) = tan θ2−tan θ1
1+tan θ1 tan θ2

= (n2
o−n2

e) tan θ
n2
e+n2

o tan2 θ
. The same

result remains when ne > no except that tanα < 0, indicating that the relative orientation

of ~E and ~D is reversed.

B.3 0.6 pt

Ans: n = no, ~E = ±k̂ × ẑ/ sin θ and this is an ordinary ray.

when n = none√
n2
o sin2 θ+n2

e cos2 θ
, Ê = ± 1√

n4
e cos2 θ+n4

o sin2 θ

−n2
e cos θk̂+(n2

o sin2 θ−n2
e cos2 θ)ẑ

sin θ
and this is an

extraordinary ray.

Solution: The problem has an axial symmetry so that in the plane formed by the z

axis and k̂, one can write ~k = kz ẑ + k⊥k̂⊥ and ~E = Ez ẑ + E⊥k̂⊥, where k̂⊥ is perpen-

dicular to ẑ. Clearly, we kz = k cos θ, k⊥ = k sin θ, Ez = E cos θ, and E⊥ = E sin θ.

Writing out the components for the equation: ~k × (~k × ~E) = −ω2µ0
~D, we get ex-

actly the same equations except that Ex is replaced by E⊥. Hence all of the solu-

tions are the same except x̂ is replaced by k̂⊥. Since k̂⊥ sin θ = k̂ − cos θẑ, we obtain

that when n = none√
n2
o sin2 θ+n2

e cos2 θ
, Ê = ± 1√

n4
e cos2 θ+n4

o sin2 θ
[−n2

e cos θ (k̂−cos θẑ)
sin θ

+ n2
o sin θẑ] =
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± 1√
n4
e cos2 θ+n4

o sin2 θ

−n2
e cos θk̂+(n2

o sin2 θ−n2
e cos2 θ)ẑ

sin θ
.

B.4 0.8 pt

Ans: (1) n = no, tanαr = 0, vr = c
no

, Ŝ = (sin θ, 0, cos θ)

(2) n = none√
n2
o sin2 θ+n2

e cos2 θ
, tanαr = (n2

o−n2
e) tan θ

n2
e+n2

o tan2 θ
, vr = c

none

√
n4
e cos2 θ+n4

o sin2 θ

n2
e cos2 θ+n2

o sin2 θ
.

Ŝ = 1√
n4
e cos2 θ+n4

o sin2 θ
(n2

o sin θ, 0, n2
e cos θ)

(3) ns =

√
(Ŝ · x̂)2n2

e + (Ŝ · ẑ)2n2
o

Solution:

The direction of the energy flow is given by the Poynting vector, ~S = ~E× ~H. Let the energy

density of EM wave be u and the ray velocity be vr. Then vr = S
u
. Here u = ue + um with

ue = 1
2
~E · ~D and um = 1

2
~B · ~H. There are two cases:

(i)n = no, ~E = (0, E, 0), ~D = ε ~E, ~k × ~E = ωµ0
~H, ~k × ~H = −ω ~D.

k̂, ~E and ~H are mutually perpendicular to each other. Hence ~S is parallel to k̂, i.e.,

Ŝ = (sin θ, 0, cos θ) and tanαr = 0.

Now from ~k× ~H = −ω ~D, one has ~D = − 1
vp
k̂× ~H. Hence ue = − 1

2vp
~E · k̂× ~H = 1

2vp
k̂ · ~E× ~H.

Similarly, we find um = 1
2vp

~H · k̂ × ~E = 1
2vp
k̂ · ~E × ~H. Hence u = 1

vp
k̂ · ~E × ~H. Since Ŝ = k̂,

we find u = S
vp

. Hence vr = S
u

= vp = ω
k

= c
no

.

(ii) n = none√
n2
o sin2 θ+n2

e cos2 θ
. In this case, we can tak ~B = (0, B, 0) (negative y direction works

as well). ~D, ~E and k̂ are in the xz plane and ~D is perpendicular to k̂. Therefore, the angle

between ~S = 1
µ0
~E × ~B and k̂ is equal to the angle between ~D and ~E, i.e., αr = α. This is

shown in the following figure when ne < no (for ne > no, both α and αr are negative, the

relative orientation of ~E and ~D is reversed and ordering of Ŝ and k̂ are switched).
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z

B

!𝑘

𝜃
!S𝛼! 𝐸 ⊥ %𝑆

𝐷 ⊥ (𝑘

𝛼 𝐷
𝐸
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Therefore, from problem (d) (ii), we get tanαr = tanα = (n2
o−n2

e) tan θ
n2
e+n2

o tan2 θ
. Now, because

u = 1
vp
k̂ · ~E × ~H = 1

vp
| ~E × ~H| cosα, we obtain vr = S

u
= vp

cosα
. Hence the phase speed vp and

the ray speed are related by vp = vr cosα. From tanα, one finds cosα = n2
e cos2 θ+n2

o sin2 θ√
n4
e cos2 θ+n4

o sin2 θ
.

Hence vr = c
n cosα

= c
none

√
n4
e cos2 θ+n4

o sin2 θ

n2
e cos2 θ+n2

o sin2 θ
.

Clearly, Ŝ = (sin(θ + α), cos(θ + α)). Since sinα = (n2
o−n2

e) sin θ cos θ√
n4
e cos2 θ+n4

o sin2 θ
and cosα =

n2
ec cos2 θ+n2

o sin2 θ√
n4
ec cos2 θ+n4

o sin2 θ
, we find Ŝ = 1√

n4
ec cos2 θ+n4

o sin2 θ
(n2

o sin θ, 0, n2
e cos θ).

From n2
s =

(
c
vr

)2

= n2
on

2
e
n2
e cos2 θ+n2

o sin2 θ

n4
e cos2 θ+n4

o sin2 θ
= (n2

o sin θ)2n2
e+(n2

e cos θ)n2
o

n4
e cos2 θ+n4

o sin2 θ
, we find ns = (Ŝ · x̂)2n2

e + (Ŝ ·

ẑ)2n2
o .

B.5 1.1 pt

Ans: Ā = P1(n2 sin2 θ1 − P1), B̄ = −2P3(n2 sin2 θ1 − P1), C̄ = P2n
2 sin2 θ1 − P 2

3 .

φ = 0, tan θ2 = nne sin θ1

no

√
n2
o−n2 sin2 θ1

.

φ = π/2, tan θ2 = nno sin θ1

ne

√
n2
e−n2 sin2 θ1

.

Solution:

Let the distance along z axis between A and B be d and the point of the interface that

the ray passes be the origin O. The coordinates of B and A points can be expressed as

(h2, 0, z) and (h1, 0, d− z). The distances are then given by AO ≡ d1 =
√
h2

1 + (d− z)2 and

OB ≡ d2 =
√
h2

2 + z2. The propagation time from A to B is determined by the ray speed

vr as (d1ns1 + d2ns2)/c, where nsi are ray indices for medium i. According to the Fermat’s

principle, we need to minimize the optical path length defined by ∆ ≡ d1ns1 + d2ns2. Ac-

cording to problem (e), we have n2
s2 = (

−−→
OB
OB
· x̂2)2n2

e + (
−−→
OB
OB
· ẑ2)2n2

o. For an isotropic medium,

the ray index is simply the refractive index, i.e., ns1 = n. Using the following relations

−−→
OB

OB
· x̂2 = cos(φ− θ2) =

h2

d2

cosφ+
z

d2

sinφ,

−−→
OB

OB
· ẑ2 = cos(

π

2
+ φ− θ2) = sin(θ2 − φ) =

z

d2

cosφ− h2

d2

sinφ,

we find

∆ = n
√
h2

1 + (d− z)2 +
√

(h2 cosφ+ z sinφ)2n2
e + (−h2 sinφ+ z cosφ)2n2

o.

The minimum occurs when d∆
dz

= 0. We obtain

n
z − d√

h2
1 + (d− z)2

+
(h2 sinφ cosφ(n2

e − n2
o) + z(n2

e sin2 φ+ n2
o cos2 φ)√

(h2 cosφ+ z sinφ)2n2
e + (−h2 sinφ+ z cosφ)2n2

o

= 0.
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Recognizing d−z√
h21+(d−z)2

= sin θ1, moving the second term to the left and taking square of

the equation, we obtain

n2 sin2 θ1 =
(P3 − P1 tan θ2)2

P1 tan2 θ2 − 2P3 tan θ2 + P2

,

where P1 = n2
o cos2 φ + n2

e sin2 φ, P2 = n2
o sin2 φ + n2

e cos2 φ, and P3 = (n2
o − n2

e) sinφ cosφ.

By expanding the above equation out, we find

P1(n2 sin2 θ1 − P1) tan2 θ2 − 2P3(n2 sin2 θ1 − P1) tan θ1 + P2n
2 sin2 θ1 − P 2

3 = 0.

Hence Ā = P1(n2 sin2 θ1 − P1), B̄ = −2P3(n2 sin2 θ1 − P1), and C̄ = P2n
2 sin2 θ1 − P 2

3 .

For φ = 0, we have P3 = 0, P1 = n2
o, and P2 = n2

e. We find n2
o(n

2 sin2 θ1 − n2
o) tan2 θ2 +

n2
en

2 sin2 θ1 = 0. Hence tan θ2 = nne sin θ1

no

√
n2
o−n2 sin2 θ1

.

For φ = π/2, we have P3 = 0, P1 = n2
e, and P2 = n2

o. We find

n2
e(n

2 sin2 θ1 − n2
e) tan2 θ2 + n2

on
2 sin2 θ1 = 0. Hence tan θ2 = nno sin θ1

ne

√
n2
e−n2 sin2 θ1

.

Part C. Entanglement of light

C.1 0.8 pt

Ans:(1) ω = ω1 ± ω2, ~k = ~k1 ± ~k2

(2) ~ω = ~ω1 ± ~ω2, ~~k = ~~k1 ± ~~k2 represents the energy conservation and momentum

conservation of photons.

(3) Splitting of photon: Energy conservation ω = ω1 + ω2, momentum conservation: ~k =

~k1 + ~k2.

Solution:

For a light wave with frequency ω and ~k, the corresponding polarization density and the

electric field are in the form of ~A cos(ωt − ~k · ~r), which can be rewritten as
~A
2
(ei(ωt−

~k·~r) +

e−i(ωt−
~k·~r)). By substituting the above form into the equation PNL

i =
∑

j

∑
k χ

(2)
ijkEjEk and

equating the relevant exponents, we find all possible relations are

ω = ω1 + ω2, ~k = ~k1 + ~k2.

or ω = ω1 − ω2, ~k = ~k1 − ~k2,

where we have made use of the fact that the frequency is positive. The meaning for the these

relations is clear if one recall that the energy and momentum of a photon is given by ~ω and

~~k. The relation of ~ω = ~ω1 + ~ω2, ~~k = ~~k1 + ~~k2 represents the energy and momentum
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conservations when a photon with (ω, ~k) is annihilated and split into two photons with (ω1,

~k1) and (ω2, ~k2), while the relation of ~ω = ~ω1− ~ω2, ~~k = ~~k1− ~~k2 represents the energy

and momentum conservations when a photon with (ω1, ~k1) is annihilated and split into two

photons with (ω, ~k) and (ω2, ~k2).

C.2 0.8 pt

Ans: o→ o + o, e→ e + e

Solution:

For the collinear case, the phase matching conditions become ω = ω1 +ω2, ni(ω)ω
c

=
nj(ω1)ω1

c
+

nk(ω2)ω2

c
, where i, j, and k are indices of either o or e. Assuming that ω1 ≥ ω2, one can solve

ω1 as ω1 = ω − ω2. We obtain

ni(ω)− nj(ω1) =
ω2

ω
[nk(ω2)− nj(ω1)] .

(2)

Clearly, because ω > ω1 ≥ ω2, if i = j = k, ni(ω)− nj(ω1) > 0 and nk(ω2)− nj(ω1) ≤ 0, the

above equation cannot be satisfied. For other cases, because there is no relation between no

and ne, the phase matching conditions can be satisfied. Hence only o→ o+o and e→ e+e

are not possible.

C.3 1.5 pt

Ans: (1) M = Ko[1−Ne(Ωe,θ) cot θ]+Ke

2KeKo
, E = −Ne/2M and F = −(Ω− Ωe)(

1
uo
− 1

ue
) + N2

e

4M

(2) the angle between the axis of the cone and z′ is N/Ko = − 2KeNe

Ko[1−Ne(Ωe,θ) cot θ]+Ke

(3) the angle of cone is about

√
L/M

Ko
= − (Ω−Ωe)

MKo
( 1
uo
− 1

ue
) + N2

e

4M2Ko
.

Solution:

To satisfy the phase matching condition, we expand the angular frequencies ω1 and ω2 into

ω1 = Ωe + ν and ω2 = Ωo + ν ′. Clearly, because Ωe + Ωo = Ωp, to satisfy ω1 + ω2 = ω,

ν ′ = −ν. Similarly, the conditions for the wavevectors, ~k = ~k1 + ~k2, can be written as

kz = k = Kp = k1z + k2z and ~k2⊥ = −~k1⊥ ≡ ~q⊥. For the o light ray, we have k2
2⊥ + k2

2z = k2
2

with k2 = no(ω2)ω2

c
. One finds that k2z =

√
k2

2 − k2
2⊥ = k2 −

k22⊥
2k2

. Expanding the dependence

of ω2 in k2 to ν, we obtain

k2 =
no(ω2)ω2

c
=
no(Ωo)Ωo

c
+
dk2

dω2

(ω2 − Ωo) = Ko −
ν

uo
,

where uo is the group velocity for the ordinary ray. Hence to the second order of corrections,
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we get

k2z = Ko −
ν

uo
− q2

⊥
2Ko

.

Similarly, for the e light ray, we have k2
1⊥ + k2

1z = k2
1 with k1 = ne(ω1,θp)ω1

c
. One finds that

k1z =
√
k2

1 − k2
1⊥ = k1 −

k21⊥
2k1

. The expansion of k1 is different from that for k2 due to its

angle dependence. Let the spherical angles for ~k1 be θ1 and φ1. We have

k1 =
ne(ω1, θ1)ω1

c
=
ne(Ωe, θ)Ωe

c
+
dk1(Ωe, θ)

dΩe

(ω1 − Ωe) +
Ωe

c

dne(Ωe, θ)

dθ
(θ1 − θ) + · · ·

Here ne(Ωe,θ)Ωe

c
= Ke,

dk1(Ωe,θ)
dΩe

is 1/ue with ue being the group velocity for the extraordinary

ray and is given by

dk1(Ωe, θ)

dΩe

=
ne(Ωe, θ)

c
+

Ωe

c

dne(Ωe, θ)

dΩe

.

Because dne(Ωe,θ)
dθ

= none(n2
e−n2

o) sin θ cos θ

(n2
o sin2 θ+n2

e cos2 θ)3/2
= ne(Ωe, θ)Ne(Ωe, θ), we find Ne(Ωe, θ) =

(n2
e−n2

o) sin θ cos θ

n2
o sin2 θ+n2

e cos2 θ
. Note that for ne < no, Ne(Ωe, θ) < 0. To find δθ = θ1 − θ, we note

that for any ~kα, one has (cf. Fig. 2(a))

k̂α · ÔA = cos θα = cos θ cosψα + sin θ sinψα cosφα.

Since sinψ1 = |~k⊥,1|/|~k1| = q⊥/k1 � 1 and cosψ1 =
√

1− sin2 ψ1 = 1− 1/2 sin2 ψ1 + · · · , to

the second order, we can replace k1 by Ke and obtain

k̂1 · ÔA = cos θ1 = cos θ

[
1− 1

2

q2
⊥
K2
e

+ · · ·
]

+ sin θ

[
q⊥
Ke

+ · · ·
]

cosφ1.

On the other hand, cos θ1 = cos θ+ d cos θ
dθ

(θ1−θ)+ · · · = cos θ−sin θ(θ1−θ)+ · · · . Comparing

this equation to the equaton for k̂1 · ÔA, we obtain

θ1 − θ =
1

2

q2
⊥
K2
e

cot θ − q⊥
Ke

cosφ1 · · · =
1

2

q2
⊥
K2
e

cot θ +
qx′

Ke

+ · · ·

Putting all together, we find

k1z = Ke +
1

ue
(Ω− Ωe) +Ne(Ωe, θ)qx′ +

q2
⊥

2Ke

[Ne(Ωe, θ) cot θ − 1] + · · · .

The above equation when combined with the equation of k1z and the relation Kp = k1z+k2z,

we find

(Ω− Ωe)(
1

ue
− 1

uo
) +Ne(Ωe, θ)qx′ + q2

⊥

{
Ko [Ne(Ωe, θ) cot θ − 1]−Ke

2KeKo

}
= 0.
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Because ne < no, Ne(Ωe, θ) < 0. The above equation can be rewritten in the form

M

[
qx′ −

Ne

2D

]2

+Mq2
y′ = −(Ω− Ωe)(

1

uo
− 1

ue
) +

N2
e

4M
.

Here D = Ko[1−Ne(Ωe,θ) cot θ]+Ke

2KeKo
> 0. Hence E = −Ne/2M > 0 (Ne < 0) and

L = −(Ω − Ωe)(
1
uo
− 1

ue
) + N2

e

4M
. Clearly, the cone axis formed by ~k2 is characterized by

~q⊥. We find that the angle between the axis of the cone and z′ is tan−1(N/k1z), which

is about N/k1z ≈ N/Ko = − 2KeNe

Ko[1−Ne(Ωe,θ) cot θ]+Ke
. The angle of the cone is given by

sin−1

√
L/M

k2
≈
√
L/M

Ko
= − (Ω−Ωe)

MKo
( 1
uo
− 1

ue
) + N2

e

4M2Ko
.

C.4 0.8pt

Ans: P (α, β) = 1
2

sin2(α + β), P (α, β⊥) = 1
2

cos2(α + β), P (α⊥, β) = 1
2

cos2(α + β),

P (α⊥, β⊥) = 1
2

sin2(α + β)

Solution:

For a-photon, let the electric field along the polarizer and perpendicular to the polarization

represented by |αx〉 and |αy〉. Here αx and αx are essentially the electric field amplitudes in

appropriate units. The electric fields (the states) along x̂′ and ŷ′ can be written as

|x̂′a〉 = cosα|αx〉 − sinα|αy〉,

|ŷ′a〉 = sinα|αx〉+ cosα|αy〉.

Similarly, for b-photon, we have

|x̂′b〉 = cos β|βx〉 − sin β|βy〉,

|ŷ′b〉 = sin β|βx〉+ cos β|βy〉.

Hence we obtain

|x̂′a〉|ŷ′b〉 = (cosα|αx〉 − sinα|αy〉)(sin β|βx〉+ cos β|βy〉),

|ŷ′a〉|x̂′b〉 = (sinα|αx〉+ cosα|αy〉)(cos β|βx〉 − sin β|βy〉).

The state of the entangled photon pair can be written as

1√
2

(|x̂′a〉|ŷ′b〉+ |ŷ′a〉|x̂′b〉)

=
1√
2

[(cosα sin β + sinα cos β)(|αx〉|βx〉 − |αy〉|βy〉)

+ (cosα cos β − sinα sin β)(|αx〉|βy〉 − |αy〉|βx〉)]

=
1√
2

[sin(α + β)(|αx〉|βx〉 − |αy〉|βy〉) + cos(α + β)(|αx〉|βy〉 − |αy〉|βx〉)]
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From the above equation, we obtain

P (α, β) =
1

2
sin2(α + β),

P (α⊥, β⊥) =
1

2
sin2(α + β),

P (α, β⊥) =
1

2
cos2(α + β),

P (α⊥, β) =
1

2
cos2(α + β).

C.5 0.5pt

Ans: S = | cos 2(α− β)− cos 2(α− β′)|+ | cos 2(α′ − β) + cos 2(α′ − β′)|

S = 2
√

2. S > 2 indicates that it is not consistent with classical theories.

Solution:

One first realizes that E(α, β) = P (α,β)+P (α⊥,β⊥)−P (α,β⊥)−P (α⊥,β)
P (α,β)+P (α⊥,β⊥)+P (α,β⊥)+P (α⊥,β)

. Using expressions for P , we

find

E(α, β) = sin2(α + β)− cos2(α + β)

= (sinα cos β + cosα sin β)2 − (cosα cos β − sinα sin β)2

= −(cos2 α− sin2 α)(cos2 β − sin2 β) + 4 sinα sin β cosα cos β

= sin(2α) sin(2β)− cos(2α) cos(2β) = − cos 2(α− β).

Hence S = | cos 2(α−β)− cos 2(α−β′)|+ | cos 2(α′−β) + cos 2(α′−β′)|. For α = π
4
, α′ = 0,

β = −π
8
, β′ = π

8
, we find S = | − 1√

2
− 1√

2
|+ | 1√

2
+ 1√

2
| = 2

√
2 > 2. Hence classical theories

do not apply.
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