Part A. Light propagation in isotropic dielectric media

A. 10.4 pt

Ans: $\frac{1}{\sqrt{\mu_{0} \epsilon}}$

Solution:

From $\vec{k} \times \vec{E}=\omega \vec{B}=\omega \mu_{0} \vec{H}$ and $\vec{k} \times \vec{H}=-\omega \vec{D}$, one obtains $\vec{k} \times(\vec{k} \times \vec{E})=-\omega^{2} \mu_{0} \vec{D}$. By using the given identity $\vec{A} \times(\vec{B} \times \vec{C})=\vec{B}(\vec{A} \cdot \vec{C})-\vec{C}(\vec{A} \cdot \vec{B})$, one finds $\vec{k} \times(\vec{k} \times \vec{E})=\vec{k}(\vec{k} \cdot \vec{E})-k^{2} \vec{E}$. Since $\vec{D} \cdot \vec{k}=0$ and $\vec{D}=\epsilon \vec{E}$, we find $\vec{k} \times(\vec{k} \times \vec{E})=-k^{2} \vec{E}$ and the relation $\vec{k} \times(\vec{k} \times \vec{E})=-\omega^{2} \mu_{0} \vec{D}$ reduces to $-k^{2} \vec{E}=-\omega^{2} \mu_{0} \epsilon \vec{E}$.
Now the phase delocity is determined by $\frac{d(\vec{k} \cdot \vec{r}-\omega t)}{d t}=0$, we find that the phase velocity $\vec{v}_{p}=\frac{d \vec{r}}{d t}=\frac{\omega}{k} \hat{k}$. Clearly, we have $\frac{\omega}{k}=\frac{1}{\sqrt{\mu_{0} \epsilon}}$. Hence $v_{p}=\frac{1}{\sqrt{\mu_{0} \epsilon}}$.
A. 20.2 pt

Ans: $c \sqrt{\mu_{0} \epsilon}$

Solution:

From $v_{p}=\frac{1}{\sqrt{\mu_{0} \epsilon}}=\frac{c}{n}$, we find $n=c \sqrt{\mu_{0} \epsilon}$
A. 30.4 pt

Ans: $\hat{k}, v_{r}=v_{p}=\frac{1}{\sqrt{\mu_{0} \epsilon}}$

Solution:

To find the speed of the ray, we first note that the direction of the energy flow, given by the Poynting vector $\vec{S}=\vec{E} \times \vec{H}$, is in the same direction of \vec{k}. The electromagnetic energy density $u=u_{e}+u_{m}$ with $u_{e}=\frac{1}{2} \vec{E} \cdot \vec{D}$ and $u_{m}=\frac{1}{2} \vec{B} \cdot \vec{H}$.
Now, from $\vec{k} \times \vec{H}=-\omega \vec{D}$, one has $\vec{D}=-\frac{1}{v_{p}} \hat{k} \times \vec{H}$. Hence $u_{e}=-\frac{1}{2 v_{p}} \vec{E} \cdot \hat{k} \times \vec{H}=\frac{1}{2 v_{p}} \hat{k} \cdot \vec{E} \times \vec{H}$.
Similarly, from $\vec{k} \times \vec{E}=\omega \vec{B}$, we find $u_{m}=\frac{1}{2 v_{p}} \vec{B} \cdot \hat{k} \times \vec{E}=\frac{1}{2 v_{p}} \hat{k} \cdot \vec{E} \times \vec{H}$. Hence $u=\frac{1}{v_{p}} \hat{k} \cdot \vec{E} \times \vec{B}$. We find $v_{r}=S / u=v_{p}=\frac{1}{\sqrt{\mu_{0} \epsilon}}$.

Part B. Light propagation in in uniaxial dielectric media

B. 1 1.5pt

Ans: $n=n_{o}, \hat{B}= \pm \hat{k} \times \hat{y}= \pm(-\cos \theta, 0, \sin \theta), \hat{D}= \pm \hat{y}$ or $n=\frac{n_{o} n_{e}}{\sqrt{n_{o}^{2} \sin ^{2} \theta+n_{e}^{2} \cos ^{2} \theta}}, \hat{B}= \pm \hat{y}$, $\hat{D}= \pm \hat{y} \times \hat{k}= \pm(\cos \theta, 0,-\sin \theta)$. For $\theta=0$, there is only one permitted value for the refractive index

Solution:

From $\vec{k} \times \vec{E}=\omega \mu_{0} \vec{H}$ and $\vec{k} \times \vec{H}=-\omega \vec{D}$, one obtains $\vec{k} \times(\vec{k} \times \vec{E})=-\omega^{2} \mu_{0} \vec{D}$. Writing out
components and using $\omega=\frac{c}{n} k$, we find

$$
\begin{aligned}
-\cos ^{2} \theta E_{x}+\cos \theta \sin \theta E_{z} & =-\frac{n_{o}^{2}}{n^{2}} E_{x} \\
-\cos ^{2} \theta E_{y}-\sin ^{2} \theta E_{y} & =-\frac{n_{o}^{2}}{n^{2}} E_{y} \\
-\sin ^{2} \theta E_{z}+\cos \theta \sin \theta E_{x} & =-\frac{n_{e}^{2}}{n^{2}} E_{z}
\end{aligned}
$$

After a bit rearrangement, we obtain

$$
\begin{aligned}
\left(1-\frac{n_{o}^{2}}{n^{2}}\right) E_{y} & =0 \\
\left(\frac{n_{o}^{2}}{n^{2}}-\cos ^{2} \theta\right) E_{x}+\cos \theta \sin \theta E_{z} & =0 \\
\cos \theta \sin \theta E_{x}+\left(\frac{n_{o}^{2}}{n^{2}}-\sin ^{2} \theta\right) E_{z} & =0
\end{aligned}
$$

The vanishing of the determinant yields

$$
\begin{equation*}
\left(1-\frac{n_{o}^{2}}{n^{2}}\right)\left[\left(\frac{n_{o}^{2}}{n^{2}}-\cos ^{2} \theta\right)\left(\frac{n_{e}^{2}}{n^{2}}-\sin ^{2} \theta\right)-\sin ^{2} \theta \cos ^{2} \theta\right]=0 . \tag{1}
\end{equation*}
$$

Clearly, for a general θ, we have two solutions for n :
(1) $n=n_{o}$

In this case, $E_{x}=E_{z}=0 . \vec{E}$ is parallel to the y axis. From $\vec{k} \times \vec{E}=\omega \vec{B}$ and $\vec{k} \times\left(\mu_{0} \vec{B}\right)=$ $-\omega \vec{D}$, we obtain the directions of \vec{B} and \vec{D} as $\hat{B}= \pm \hat{k} \times \hat{y}= \pm(-\cos \theta, 0, \sin \theta)$ and $\hat{D}=-\hat{k} \times \hat{B}= \pm(0,1,0)= \pm \hat{y}$.
(2) $\left(\frac{n_{o}^{2}}{n^{2}}-\cos ^{2} \theta\right)\left(\frac{n_{e}^{2}}{n^{2}}-\sin ^{2} \theta\right)-\sin ^{2} \theta \cos ^{2} \theta=0$.

After rearrangement, we find $n=\frac{n_{o} n_{e}}{\sqrt{n_{o}^{2} \sin ^{2} \theta+n_{e}^{2} \cos ^{2} \theta}}$. Clearly, at $\theta=0, n=n_{o}$, there is only one refractive index. This is the direction of the optic axis.
In this case, $E_{y}=0$. Hence \vec{E} lies in the $x z$ plane. Hence the relation $\vec{k} \times \vec{E}=\omega \vec{B}$ implies $\hat{B}= \pm \hat{y}$. The relation $\vec{k} \times\left(\mu_{0} \vec{B}\right)=-\omega \vec{D}$ implies $\hat{D}= \pm \hat{y} \times \hat{k}$.

B. 20.8 pt

Ans: (1) when $n=n_{o}, \hat{E}= \pm \hat{y}$ and this is an ordinary ray. $\tan \alpha=0$.
(2) when $n=\frac{n_{o} n_{e}}{\sqrt{n_{o}^{2} \sin ^{2} \theta+n_{e}^{2} \cos ^{2} \theta}}, \hat{E}= \pm \frac{1}{\sqrt{n_{e}^{4} \cos ^{2} \theta+n_{o}^{4} \sin ^{2} \theta}}\left(-n_{e}^{2} \cos \theta, 0, n_{o}^{2} \sin \theta\right)$ and this is an extraordinary ray. $\tan \alpha=\frac{\left(n_{o}^{2}-n_{e}^{2}\right) \tan \theta}{n_{e}^{2}+n_{o}^{2} \tan ^{2} \theta}$.

Solution:

(1) For $n=n_{o}$, both \vec{E} and \vec{D} are parallel to the y axis. This is an ordinary ray with $\tan \alpha=0$.
(2) For $n=\frac{n_{o} n_{e}}{\sqrt{n_{o}^{2} \sin ^{2} \theta+n_{e}^{2} \cos ^{2} \theta}}, n \neq n_{o}, E_{y}=0$. By substituting n back into the equations of E_{x} and E_{z}, we find that $\frac{n_{o}^{2}}{n_{e}^{2}} \sin \theta E_{x}+\cos \theta E_{z}=0$. Hence the electric field lies in $x z$ plane with $\hat{E}= \pm \frac{1}{\sqrt{n_{e}^{4} \cos ^{2} \theta+n_{o}^{4} \sin ^{2} \theta}}\left(-n_{e}^{2} \cos \theta, 0, n_{o}^{2} \sin \theta\right)(\vec{B}$ points in $\mp y$ direction.). Therefore, \vec{E} is not perpendicular to \vec{k} and lies in the $x z$ plan in together with \vec{D} and \vec{k}. This is the extraordinary ray.
Since $\vec{k} \times \vec{H}=-\omega \vec{D}, \vec{D}$ is perpendicular to \hat{k}. Hence $\hat{D}= \pm(-\cos \theta, 0, \sin \theta)$. Let $\vec{B}=\hat{y}$, the relative orientation of \vec{E} and \vec{D} for a given θ are shown in the following figure for the case when $n_{e}<n_{o}$.

Let the angle relative to x axis be θ_{1} and θ_{2} for \vec{E} and \vec{D}. We have $\tan \theta_{2}=-\tan \theta$ and $\tan \theta_{1}=-\frac{n_{o}^{2}}{n_{e}^{2}} \tan \theta$. Hence $\tan \alpha=\tan \left(\theta_{2}-\theta_{1}\right)=\frac{\tan \theta_{2}-\tan \theta_{1}}{1+\tan \theta_{1} \tan \theta_{2}}=\frac{\left(n_{o}^{2}-n_{e}^{2}\right) \tan \theta}{n_{e}^{2}+n_{o}^{2} \tan { }^{2} \theta}$. The same result remains when $n_{e}>n_{o}$ except that $\tan \alpha<0$, indicating that the relative orientation of \vec{E} and \vec{D} is reversed.

B. 30.6 pt

Ans: $n=n_{o}, \vec{E}= \pm \hat{k} \times \hat{z} / \sin \theta$ and this is an ordinary ray.
when $n=\frac{n_{o} n_{e}}{\sqrt{n_{o}^{2} \sin ^{2} \theta+n_{e}^{2} \cos ^{2} \theta}}, \hat{E}= \pm \frac{1}{\sqrt{n_{e}^{4} \cos ^{2} \theta+n_{o}^{4} \sin ^{2} \theta}} \frac{-n_{e}^{2} \cos \theta \hat{k}+\left(n_{o}^{2} \sin ^{2} \theta-n_{e}^{2} \cos ^{2} \theta\right) \hat{z}}{\sin \theta}$ and this is an extraordinary ray.

Solution: The problem has an axial symmetry so that in the plane formed by the z axis and \hat{k}, one can write $\vec{k}=k_{z} \hat{z}+k_{\perp} \hat{k}_{\perp}$ and $\vec{E}=E_{z} \hat{z}+E_{\perp} \hat{k}_{\perp}$, where \hat{k}_{\perp} is perpendicular to \hat{z}. Clearly, we $k_{z}=k \cos \theta, k_{\perp}=k \sin \theta, E_{z}=E \cos \theta$, and $E_{\perp}=E \sin \theta$. Writing out the components for the equation: $\vec{k} \times(\vec{k} \times \vec{E})=-\omega^{2} \mu_{0} \vec{D}$, we get exactly the same equations except that E_{x} is replaced by E_{\perp}. Hence all of the solutions are the same except \hat{x} is replaced by \hat{k}_{\perp}. Since $\hat{k}_{\perp} \sin \theta=\hat{k}-\cos \theta \hat{z}$, we obtain that when $n=\frac{n_{o} n_{e}}{\sqrt{n_{o}^{2} \sin ^{2} \theta+n_{e}^{2} \cos ^{2} \theta}}, \hat{E}= \pm \frac{1}{\sqrt{n_{e}^{4} \cos ^{2} \theta+n_{o}^{4} \sin ^{2} \theta}}\left[-n_{e}^{2} \cos \theta \frac{(\hat{k}-\cos \theta \hat{z})}{\sin \theta}+n_{o}^{2} \sin \theta \hat{z}\right]=$
$\pm \frac{1}{\sqrt{n_{e}^{4} \cos ^{2} \theta+n_{o}^{4} \sin ^{2} \theta}} \frac{-n_{e}^{2} \cos \theta \hat{k}+\left(n_{o}^{2} \sin ^{2} \theta-n_{e}^{2} \cos ^{2} \theta\right) \hat{z}}{\sin \theta}$.
B. 40.8 pt

Ans: (1) $n=n_{o}, \tan \alpha_{r}=0, v_{r}=\frac{c}{n_{o}}, \hat{S}=(\sin \theta, 0, \cos \theta)$
(2) $n=\frac{n_{o} n_{e}}{\sqrt{n_{o}^{2} \sin ^{2} \theta+n_{e}^{2} \cos ^{2} \theta}}, \tan \alpha_{r}=\frac{\left(n_{o}^{2}-n_{e}^{2}\right) \tan \theta}{n_{e}^{2}+n_{o}^{2} \tan ^{2} \theta}, v_{r}=\frac{c}{n_{o} n_{e}} \sqrt{\frac{n_{e}^{4} \cos ^{2} \theta+n_{o}^{4} \sin ^{2} \theta}{n_{e}^{2} \cos ^{2} \theta+n_{o}^{2} \sin ^{2} \theta}}$.
$\hat{S}=\frac{1}{\sqrt{n_{e}^{4} \cos ^{2} \theta+n_{o}^{4} \sin ^{2} \theta}}\left(n_{o}^{2} \sin \theta, 0, n_{e}^{2} \cos \theta\right)$
(3) $n_{s}=\sqrt{(\hat{S} \cdot \hat{x})^{2} n_{e}^{2}+(\hat{S} \cdot \hat{z})^{2} n_{o}^{2}}$

Solution:

The direction of the energy flow is given by the Poynting vector, $\vec{S}=\vec{E} \times \vec{H}$. Let the energy density of EM wave be u and the ray velocity be v_{r}. Then $v_{r}=\frac{S}{u}$. Here $u=u_{e}+u_{m}$ with $u_{e}=\frac{1}{2} \vec{E} \cdot \vec{D}$ and $u_{m}=\frac{1}{2} \vec{B} \cdot \vec{H}$. There are two cases:
(i) $n=n_{o}, \vec{E}=(0, E, 0), \vec{D}=\epsilon \vec{E}, \vec{k} \times \vec{E}=\omega \mu_{0} \vec{H}, \vec{k} \times \vec{H}=-\omega \vec{D}$.
\hat{k}, \vec{E} and \vec{H} are mutually perpendicular to each other. Hence \vec{S} is parallel to \hat{k}, i.e., $\hat{S}=(\sin \theta, 0, \cos \theta)$ and $\tan \alpha_{r}=0$.
Now from $\vec{k} \times \vec{H}=-\omega \vec{D}$, one has $\vec{D}=-\frac{1}{v_{p}} \hat{k} \times \vec{H}$. Hence $u_{e}=-\frac{1}{2 v_{p}} \vec{E} \cdot \hat{k} \times \vec{H}=\frac{1}{2 v_{p}} \hat{k} \cdot \vec{E} \times \vec{H}$. Similarly, we find $u_{m}=\frac{1}{2 v_{p}} \vec{H} \cdot \hat{k} \times \vec{E}=\frac{1}{2 v_{p}} \hat{k} \cdot \vec{E} \times \vec{H}$. Hence $u=\frac{1}{v_{p}} \hat{k} \cdot \vec{E} \times \vec{H}$. Since $\hat{S}=\hat{k}$, we find $u=\frac{S}{v_{p}}$. Hence $v_{r}=\frac{S}{u}=v_{p}=\frac{\omega}{k}=\frac{c}{n_{o}}$.
(ii) $n=\frac{n_{o} n_{e}}{\sqrt{n_{o}^{2} \sin ^{2} \theta+n_{e}^{2} \cos ^{2} \theta}}$. In this case, we can tak $\vec{B}=(0, B, 0)$ (negative y direction works as well). \vec{D}, \vec{E} and \hat{k} are in the $x z$ plane and \vec{D} is perpendicular to \hat{k}. Therefore, the angle between $\vec{S}=\frac{1}{\mu_{0}} \vec{E} \times \vec{B}$ and \hat{k} is equal to the angle between \vec{D} and \vec{E}, i.e., $\alpha_{r}=\alpha$. This is shown in the following figure when $n_{e}<n_{o}$ (for $n_{e}>n_{o}$, both α and α_{r} are negative, the relative orientation of \vec{E} and \vec{D} is reversed and ordering of \hat{S} and \hat{k} are switched).

$\vec{E} \perp \hat{S}$
$\vec{D} \perp \widehat{k}$

Therefore, from problem (d) (ii), we get $\tan \alpha_{r}=\tan \alpha=\frac{\left(n_{o}^{2}-n_{e}^{2}\right) \tan \theta}{n_{e}^{2}+n_{o}^{2} \tan ^{2} \theta}$. Now, because $u=\frac{1}{v_{p}} \hat{k} \cdot \vec{E} \times \vec{H}=\frac{1}{v_{p}}|\vec{E} \times \vec{H}| \cos \alpha$, we obtain $v_{r}=\frac{S}{u}=\frac{v_{p}}{\cos \alpha}$. Hence the phase speed v_{p} and the ray speed are related by $v_{p}=v_{r} \cos \alpha$. From $\tan \alpha$, one finds $\cos \alpha=\frac{n_{e}^{2} \cos ^{2} \theta+n_{o}^{2} \sin ^{2} \theta}{\sqrt{n_{e}^{4} \cos ^{2} \theta+n_{o}^{4} \sin ^{2} \theta}}$. Hence $v_{r}=\frac{c}{n \cos \alpha}=\frac{c}{n_{o} n_{e}} \sqrt{\frac{n_{e}^{4} \cos ^{2} \theta+n_{o}^{4} \sin ^{2} \theta}{n_{e}^{2} \cos ^{2} \theta+n_{o}^{2} \sin ^{2} \theta}}$.
Clearly, $\hat{S}=(\sin (\theta+\alpha), \cos (\theta+\alpha))$. Since $\sin \alpha=\frac{\left(n_{o}^{2}-n_{e}^{2}\right) \sin \theta \cos \theta}{\sqrt{n_{e}^{4} \cos ^{2} \theta+n_{o}^{4} \sin ^{2} \theta}}$ and $\cos \alpha=$ $\frac{n_{e}^{2} c \cos ^{2} \theta+n_{o}^{2} \sin ^{2} \theta}{\sqrt{n_{e}^{4} c \cos ^{2} \theta+n_{o}^{4} \sin ^{2} \theta}}$, we find $\hat{S}=\frac{1}{\sqrt{n_{e}^{4} c \cos ^{2} \theta+n_{o}^{4} \sin ^{2} \theta}}\left(n_{o}^{2} \sin \theta, 0, n_{e}^{2} \cos \theta\right)$.
From $n_{s}^{2}=\left(\frac{c}{v_{r}}\right)^{2}=n_{o}^{2} n_{e}^{2} \frac{n_{e}^{2} \cos ^{2} \theta+n_{e}^{2} \sin ^{2} \theta}{n_{e}^{4} \cos ^{2} \theta+n_{o}^{4} \sin ^{2} \theta}=\frac{\left(n_{o}^{2} \sin ^{2} \theta\right)^{2} n_{e}^{2}+\left(n_{n}^{2} \cos \theta\right) n_{o}^{2}}{n_{e}^{4} \cos ^{2} \theta+n_{o}^{4} \sin ^{2} \theta}$, we find $n_{s}=(\hat{S} \cdot \hat{x})^{2} n_{e}^{2}+(\hat{S}$. $\hat{z})^{2} n_{o}^{2}$.

B. 51.1 pt

Ans: $\bar{A}=P_{1}\left(n^{2} \sin ^{2} \theta_{1}-P_{1}\right), \bar{B}=-2 P_{3}\left(n^{2} \sin ^{2} \theta_{1}-P_{1}\right), \bar{C}=P_{2} n^{2} \sin ^{2} \theta_{1}-P_{3}^{2}$.
$\phi=0, \tan \theta_{2}=\frac{n n_{e} \sin \theta_{1}}{n_{o} \sqrt{n_{o}^{2}-n^{2} \sin ^{2} \theta_{1}}}$.
$\phi=\pi / 2, \tan \theta_{2}=\frac{n n_{o} \sin \theta_{1}}{n_{e} \sqrt{n_{e}^{2}-n^{2} \sin ^{2} \theta_{1}}}$.

Solution:

Let the distance along z axis between A and B be d and the point of the interface that the ray passes be the origin O. The coordinates of B and A points can be expressed as $\left(h_{2}, 0, z\right)$ and $\left(h_{1}, 0, d-z\right)$. The distances are then given by $\overline{A O} \equiv d_{1}=\sqrt{h_{1}^{2}+(d-z)^{2}}$ and $\overline{O B} \equiv d_{2}=\sqrt{h_{2}^{2}+z^{2}}$. The propagation time from A to B is determined by the ray speed v_{r} as $\left(d_{1} n_{s 1}+d_{2} n_{s 2}\right) / c$, where $n_{s i}$ are ray indices for medium i. According to the Fermat's principle, we need to minimize the optical path length defined by $\Delta \equiv d_{1} n_{s 1}+d_{2} n_{s 2}$. According to problem (e), we have $n_{s 2}^{2}=\left(\frac{\overrightarrow{O B}}{\overline{O B}} \cdot \hat{x}_{2}\right)^{2} n_{e}^{2}+\left(\frac{\overrightarrow{O B}}{\overline{O B}} \cdot \hat{z}_{2}\right)^{2} n_{o}^{2}$. For an isotropic medium, the ray index is simply the refractive index, i.e., $n_{s 1}=n$. Using the following relations

$$
\begin{aligned}
& \frac{\overrightarrow{O B}}{\overline{O B}} \cdot \hat{x}_{2}=\cos \left(\phi-\theta_{2}\right)=\frac{h_{2}}{d_{2}} \cos \phi+\frac{z}{d_{2}} \sin \phi, \\
& \overrightarrow{O B} \\
& \overrightarrow{O B} \cdot \hat{z}_{2}=\cos \left(\frac{\pi}{2}+\phi-\theta_{2}\right)=\sin \left(\theta_{2}-\phi\right)=\frac{z}{d_{2}} \cos \phi-\frac{h_{2}}{d_{2}} \sin \phi,
\end{aligned}
$$

we find

$$
\Delta=n \sqrt{h_{1}^{2}+(d-z)^{2}}+\sqrt{\left(h_{2} \cos \phi+z \sin \phi\right)^{2} n_{e}^{2}+\left(-h_{2} \sin \phi+z \cos \phi\right)^{2} n_{o}^{2}}
$$

The minimum occurs when $\frac{d \Delta}{d z}=0$. We obtain

$$
n \frac{z-d}{\sqrt{h_{1}^{2}+(d-z)^{2}}}+\frac{\left(h_{2} \sin \phi \cos \phi\left(n_{e}^{2}-n_{o}^{2}\right)+z\left(n_{e}^{2} \sin ^{2} \phi+n_{o}^{2} \cos ^{2} \phi\right)\right.}{\sqrt{\left(h_{2} \cos \phi+z \sin \phi\right)^{2} n_{e}^{2}+\left(-h_{2} \sin \phi+z \cos \phi\right)^{2} n_{o}^{2}}}=0 .
$$

Recognizing $\frac{d-z}{\sqrt{h_{1}^{2}+(d-z)^{2}}}=\sin \theta_{1}$, moving the second term to the left and taking square of the equation, we obtain

$$
n^{2} \sin ^{2} \theta_{1}=\frac{\left(P_{3}-P_{1} \tan \theta_{2}\right)^{2}}{P_{1} \tan ^{2} \theta_{2}-2 P_{3} \tan \theta_{2}+P_{2}}
$$

where $P_{1}=n_{o}^{2} \cos ^{2} \phi+n_{e}^{2} \sin ^{2} \phi, P_{2}=n_{o}^{2} \sin ^{2} \phi+n_{e}^{2} \cos ^{2} \phi$, and $P_{3}=\left(n_{o}^{2}-n_{e}^{2}\right) \sin \phi \cos \phi$. By expanding the above equation out, we find

$$
P_{1}\left(n^{2} \sin ^{2} \theta_{1}-P_{1}\right) \tan ^{2} \theta_{2}-2 P_{3}\left(n^{2} \sin ^{2} \theta_{1}-P_{1}\right) \tan \theta_{1}+P_{2} n^{2} \sin ^{2} \theta_{1}-P_{3}^{2}=0
$$

Hence $\bar{A}=P_{1}\left(n^{2} \sin ^{2} \theta_{1}-P_{1}\right), \bar{B}=-2 P_{3}\left(n^{2} \sin ^{2} \theta_{1}-P_{1}\right)$, and $\bar{C}=P_{2} n^{2} \sin ^{2} \theta_{1}-P_{3}^{2}$.
For $\phi=0$, we have $P_{3}=0, P_{1}=n_{o}^{2}$, and $P_{2}=n_{e}^{2}$. We find $n_{o}^{2}\left(n^{2} \sin ^{2} \theta_{1}-n_{o}^{2}\right) \tan ^{2} \theta_{2}+$ $n_{e}^{2} n^{2} \sin ^{2} \theta_{1}=0$. Hence $\tan \theta_{2}=\frac{n n_{e} \sin \theta_{1}}{n_{o} \sqrt{n_{o}^{2}-n^{2} \sin ^{2} \theta_{1}}}$. For $\phi=\pi / 2$, we have $P_{3}=0, P_{1}=n_{e}^{2}$, and $P_{2}=n_{o}^{2}$. We find $n_{e}^{2}\left(n^{2} \sin ^{2} \theta_{1}-n_{e}^{2}\right) \tan ^{2} \theta_{2}+n_{o}^{2} n^{2} \sin ^{2} \theta_{1}=0$. Hence $\tan \theta_{2}=\frac{n n_{o} \sin \theta_{1}}{n_{e} \sqrt{n_{e}^{2}-n^{2} \sin ^{2} \theta_{1}}}$.

Part C. Entanglement of light

C. 10.8 pt

Ans:(1) $\omega=\omega_{1} \pm \omega_{2}, \vec{k}=\vec{k}_{1} \pm \vec{k}_{2}$
(2) $\hbar \omega=\hbar \omega_{1} \pm \hbar \omega_{2}, \hbar \vec{k}=\hbar \vec{k}_{1} \pm \hbar \vec{k}_{2}$ represents the energy conservation and momentum conservation of photons.
(3) Splitting of photon: Energy conservation $\omega=\omega_{1}+\omega_{2}$, momentum conservation: $\vec{k}=$ $\vec{k}_{1}+\vec{k}_{2}$.

Solution:

For a light wave with frequency ω and \vec{k}, the corresponding polarization density and the electric field are in the form of $\vec{A} \cos (\omega t-\vec{k} \cdot \vec{r})$, which can be rewritten as $\frac{\vec{A}}{2}\left(e^{i(\omega t-\vec{k} \cdot \vec{r})}+\right.$ $e^{-i(\omega t-\vec{k} \cdot \vec{r})}$. By substituting the above form into the equation $P_{i}^{N L}=\sum_{j} \sum_{k} \chi_{i j k}^{(2)} E_{j} E_{k}$ and equating the relevant exponents, we find all possible relations are

$$
\begin{aligned}
\omega & =\omega_{1}+\omega_{2}, \vec{k} \\
\text { or } \omega & =\vec{k}_{1}+\vec{k}_{2} . \\
-\omega_{2}, \vec{k} & =\vec{k}_{1}-\vec{k}_{2},
\end{aligned}
$$

where we have made use of the fact that the frequency is positive. The meaning for the these relations is clear if one recall that the energy and momentum of a photon is given by $\hbar \omega$ and $\hbar \vec{k}$. The relation of $\hbar \omega=\hbar \omega_{1}+\hbar \omega_{2}, \hbar \vec{k}=\hbar \vec{k}_{1}+\hbar \vec{k}_{2}$ represents the energy and momentum
conservations when a photon with (ω, \vec{k}) is annihilated and split into two photons with (ω_{1}, $\left.\vec{k}_{1}\right)$ and $\left(\omega_{2}, \vec{k}_{2}\right)$, while the relation of $\hbar \omega=\hbar \omega_{1}-\hbar \omega_{2}, \hbar \vec{k}=\hbar \vec{k}_{1}-\hbar \vec{k}_{2}$ represents the energy and momentum conservations when a photon with $\left(\omega_{1}, \vec{k}_{1}\right)$ is annihilated and split into two photons with (ω, \vec{k}) and $\left(\omega_{2}, \vec{k}_{2}\right)$.

C. 20.8 pt

Ans: $\mathbf{o} \rightarrow \mathbf{o}+\mathbf{o}, \mathbf{e} \rightarrow \mathbf{e}+\mathbf{e}$

Solution:

For the collinear case, the phase matching conditions become $\omega=\omega_{1}+\omega_{2}, \frac{n_{i}(\omega) \omega}{c}=\frac{n_{j}\left(\omega_{1}\right) \omega_{1}}{c}+$ $\frac{n_{k}\left(\omega_{2}\right) \omega_{2}}{c}$, where i, j, and k are indices of either \mathbf{o} or \mathbf{e}. Assuming that $\omega_{1} \geq \omega_{2}$, one can solve ω_{1} as $\omega_{1}=\omega-\omega_{2}$. We obtain

$$
\begin{equation*}
n_{i}(\omega)-n_{j}\left(\omega_{1}\right)=\frac{\omega_{2}}{\omega}\left[n_{k}\left(\omega_{2}\right)-n_{j}\left(\omega_{1}\right)\right] . \tag{2}
\end{equation*}
$$

Clearly, because $\omega>\omega_{1} \geq \omega_{2}$, if $i=j=k, n_{i}(\omega)-n_{j}\left(\omega_{1}\right)>0$ and $n_{k}\left(\omega_{2}\right)-n_{j}\left(\omega_{1}\right) \leq 0$, the above equation cannot be satisfied. For other cases, because there is no relation between n_{o} and n_{e}, the phase matching conditions can be satisfied. Hence only $\mathbf{o} \rightarrow \mathbf{o}+\mathbf{o}$ and $\mathbf{e} \rightarrow \mathbf{e}+\mathbf{e}$ are not possible.

C. 31.5 pt

Ans: (1) $M=\frac{K_{o}\left[1-N_{e}\left(\Omega_{e}, \theta\right) \cot \theta\right]+K_{e}}{2 K_{e} K_{o}}, E=-N_{e} / 2 M$ and $F=-\left(\Omega-\Omega_{e}\right)\left(\frac{1}{u_{o}}-\frac{1}{u_{e}}\right)+\frac{N_{e}^{2}}{4 M}$
(2) the angle between the axis of the cone and z^{\prime} is $N / K_{o}=-\frac{2 K_{e} N_{e}}{K_{o}\left[1-N_{e}\left(\Omega_{e}, \theta\right) \cot \theta\right]+K_{e}}$
(3) the angle of cone is about $\frac{\sqrt{L / M}}{K_{o}}=-\frac{\left(\Omega-\Omega_{e}\right)}{M K_{o}}\left(\frac{1}{u_{o}}-\frac{1}{u_{e}}\right)+\frac{N_{e}^{2}}{4 M^{2} K_{o}}$.

Solution:
To satisfy the phase matching condition, we expand the angular frequencies ω_{1} and ω_{2} into $\omega_{1}=\Omega_{e}+\nu$ and $\omega_{2}=\Omega_{o}+\nu^{\prime}$. Clearly, because $\Omega_{e}+\Omega_{o}=\Omega_{p}$, to satisfy $\omega_{1}+\omega_{2}=\omega$, $\nu^{\prime}=-\nu$. Similarly, the conditions for the wavevectors, $\vec{k}=\vec{k}_{1}+\vec{k}_{2}$, can be written as $k_{z}=k=K_{p}=k_{1 z}+k_{2 z}$ and $\vec{k}_{2 \perp}=-\vec{k}_{1 \perp} \equiv \vec{q}_{\perp}$. For the o light ray, we have $k_{2 \perp}^{2}+k_{2 z}^{2}=k_{2}^{2}$ with $k_{2}=\frac{n_{o}\left(\omega_{2}\right) \omega_{2}}{c}$. One finds that $k_{2 z}=\sqrt{k_{2}^{2}-k_{2 \perp}^{2}}=k_{2}-\frac{k_{2 \perp}^{2}}{2 k_{2}}$. Expanding the dependence of ω_{2} in k_{2} to ν, we obtain

$$
k_{2}=\frac{n_{o}\left(\omega_{2}\right) \omega_{2}}{c}=\frac{n_{o}\left(\Omega_{o}\right) \Omega_{o}}{c}+\frac{d k_{2}}{d \omega_{2}}\left(\omega_{2}-\Omega_{o}\right)=K_{o}-\frac{\nu}{u_{o}},
$$

where u_{o} is the group velocity for the ordinary ray. Hence to the second order of corrections,
we get

$$
k_{2 z}=K_{o}-\frac{\nu}{u_{o}}-\frac{q_{\perp}^{2}}{2 K_{o}} .
$$

Similarly, for the e light ray, we have $k_{1 \perp}^{2}+k_{1 z}^{2}=k_{1}^{2}$ with $k_{1}=\frac{n_{e}\left(\omega_{1}, \theta_{p}\right) \omega_{1}}{c}$. One finds that $k_{1 z}=\sqrt{k_{1}^{2}-k_{1 \perp}^{2}}=k_{1}-\frac{k_{1 \perp}^{2}}{2 k_{1}}$. The expansion of k_{1} is different from that for k_{2} due to its angle dependence. Let the spherical angles for \vec{k}_{1} be θ_{1} and ϕ_{1}. We have

$$
k_{1}=\frac{n_{e}\left(\omega_{1}, \theta_{1}\right) \omega_{1}}{c}=\frac{n_{e}\left(\Omega_{e}, \theta\right) \Omega_{e}}{c}+\frac{d k_{1}\left(\Omega_{e}, \theta\right)}{d \Omega_{e}}\left(\omega_{1}-\Omega_{e}\right)+\frac{\Omega_{e}}{c} \frac{d n_{e}\left(\Omega_{e}, \theta\right)}{d \theta}\left(\theta_{1}-\theta\right)+\cdots
$$

Here $\frac{n_{e}\left(\Omega_{e}, \theta\right) \Omega_{e}}{c}=K_{e}, \frac{d k_{1}\left(\Omega_{e}, \theta\right)}{d \Omega_{e}}$ is $1 / u_{e}$ with u_{e} being the group velocity for the extraordinary ray and is given by

$$
\frac{d k_{1}\left(\Omega_{e}, \theta\right)}{d \Omega_{e}}=\frac{n_{e}\left(\Omega_{e}, \theta\right)}{c}+\frac{\Omega_{e}}{c} \frac{d n_{e}\left(\Omega_{e}, \theta\right)}{d \Omega_{e}} .
$$

Because $\frac{d n_{e}\left(\Omega_{e}, \theta\right)}{d \theta}=\frac{n_{o} n_{e}\left(n_{e}^{2}-n_{o}^{2}\right) \sin \theta \cos \theta}{\left(n_{o}^{\left.2_{o} \sin ^{2} \theta+n_{e}^{2} \cos ^{2} \theta\right)^{3 / 2}}=n_{e}\left(\Omega_{e}, \theta\right) N_{e}\left(\Omega_{e}, \theta\right) \text {, we find } N_{e}\left(\Omega_{e}, \theta\right)=\right.}$ $\frac{\left(n_{e}^{2}-n_{n}^{2}\right) \sin \theta \cos \theta}{n_{o}^{2} \sin ^{2} \theta+n_{e}^{2} \cos ^{2} \theta}$. Note that for $n_{e}<n_{o}, N_{e}\left(\Omega_{e}, \theta\right)<0$. To find $\delta \theta=\theta_{1}-\theta$, we note that for any \vec{k}_{α}, one has (cf. Fig. 2(a))

$$
\hat{k}_{\alpha} \cdot \widehat{O A}=\cos \theta_{\alpha}=\cos \theta \cos \psi_{\alpha}+\sin \theta \sin \psi_{\alpha} \cos \phi_{\alpha}
$$

Since $\sin \psi_{1}=\left|\vec{k}_{\perp, 1}\right| /\left|\vec{k}_{1}\right|=q_{\perp} / k_{1} \ll 1$ and $\cos \psi_{1}=\sqrt{1-\sin ^{2} \psi_{1}}=1-1 / 2 \sin ^{2} \psi_{1}+\cdots$, to the second order, we can replace k_{1} by K_{e} and obtain

$$
\hat{k}_{1} \cdot \widehat{O A}=\cos \theta_{1}=\cos \theta\left[1-\frac{1}{2} \frac{q_{\perp}^{2}}{K_{e}^{2}}+\cdots\right]+\sin \theta\left[\frac{q_{\perp}}{K_{e}}+\cdots\right] \cos \phi_{1} .
$$

On the other hand, $\cos \theta_{1}=\cos \theta+\frac{d \cos \theta}{d \theta}\left(\theta_{1}-\theta\right)+\cdots=\cos \theta-\sin \theta\left(\theta_{1}-\theta\right)+\cdots$. Comparing this equation to the equaton for $\hat{k}_{1} \cdot \widehat{O A}$, we obtain

$$
\theta_{1}-\theta=\frac{1}{2} \frac{q_{\perp}^{2}}{K_{e}^{2}} \cot \theta-\frac{q_{\perp}}{K_{e}} \cos \phi_{1} \cdots=\frac{1}{2} \frac{q_{\perp}^{2}}{K_{e}^{2}} \cot \theta+\frac{q_{x^{\prime}}}{K_{e}}+\cdots
$$

Putting all together, we find

$$
k_{1 z}=K_{e}+\frac{1}{u_{e}}\left(\Omega-\Omega_{e}\right)+N_{e}\left(\Omega_{e}, \theta\right) q_{x^{\prime}}+\frac{q_{\perp}^{2}}{2 K_{e}}\left[N_{e}\left(\Omega_{e}, \theta\right) \cot \theta-1\right]+\cdots .
$$

The above equation when combined with the equation of $k_{1 z}$ and the relation $K_{p}=k_{1 z}+k_{2 z}$, we find

$$
\left(\Omega-\Omega_{e}\right)\left(\frac{1}{u_{e}}-\frac{1}{u_{o}}\right)+N_{e}\left(\Omega_{e}, \theta\right) q_{x^{\prime}}+q_{\perp}^{2}\left\{\frac{K_{o}\left[N_{e}\left(\Omega_{e}, \theta\right) \cot \theta-1\right]-K_{e}}{2 K_{e} K_{o}}\right\}=0 .
$$

Because $n_{e}<n_{o}, N_{e}\left(\Omega_{e}, \theta\right)<0$. The above equation can be rewritten in the form

$$
M\left[q_{x^{\prime}}-\frac{N_{e}}{2 D}\right]^{2}+M q_{y^{\prime}}^{2}=-\left(\Omega-\Omega_{e}\right)\left(\frac{1}{u_{o}}-\frac{1}{u_{e}}\right)+\frac{N_{e}^{2}}{4 M} .
$$

Here $D=\frac{K_{o}\left[1-N_{e}\left(\Omega_{e} \theta\right) \cot \theta\right]+K_{e}}{2 K_{e} K_{o}}>0$. Hence $E=-N_{e} / 2 M>0\left(N_{e}<0\right)$ and $L=-\left(\Omega-\Omega_{e}\right)\left(\frac{1}{u_{o}}-\frac{1}{u_{e}}\right)+\frac{N_{e}^{2}}{4 M}$. Clearly, the cone axis formed by \vec{k}_{2} is characterized by \vec{q}_{\perp}. We find that the angle between the axis of the cone and z^{\prime} is $\tan ^{-1}\left(N / k_{1 z}\right)$, which is about $N / k_{1 z} \approx N / K_{o}=-\frac{2 K_{e} N_{e}}{K_{o}\left[1-N_{e}\left(\Omega_{e}, \theta\right) \cot \theta\right]+K_{e}}$. The angle of the cone is given by $\sin ^{-1} \frac{\sqrt{L / M}}{k_{2}} \approx \frac{\sqrt{L / M}}{K_{o}}=-\frac{\left(\Omega-\Omega_{e}\right)}{M K_{o}}\left(\frac{1}{u_{o}}-\frac{1}{u_{e}}\right)+\frac{N_{e}^{2}}{4 M^{2} K_{o}}$.

C. 40.8 pt

Ans: $P(\alpha, \beta)=\frac{1}{2} \sin ^{2}(\alpha+\beta), P\left(\alpha, \beta_{\perp}\right)=\frac{1}{2} \cos ^{2}(\alpha+\beta), P\left(\alpha_{\perp}, \beta\right)=\frac{1}{2} \cos ^{2}(\alpha+\beta)$, $P\left(\alpha_{\perp}, \beta_{\perp}\right)=\frac{1}{2} \sin ^{2}(\alpha+\beta)$

Solution:

For a-photon, let the electric field along the polarizer and perpendicular to the polarization represented by $\left|\alpha_{x}\right\rangle$ and $\left|\alpha_{y}\right\rangle$. Here α_{x} and α_{x} are essentially the electric field amplitudes in appropriate units. The electric fields (the states) along \hat{x}^{\prime} and \hat{y}^{\prime} can be written as

$$
\begin{aligned}
\left|\hat{x}_{a}^{\prime}\right\rangle & =\cos \alpha\left|\alpha_{x}\right\rangle-\sin \alpha\left|\alpha_{y}\right\rangle, \\
\left|\hat{y}_{a}^{\prime}\right\rangle & =\sin \alpha\left|\alpha_{x}\right\rangle+\cos \alpha\left|\alpha_{y}\right\rangle .
\end{aligned}
$$

Similarly, for b-photon, we have

$$
\begin{array}{r}
\left|\hat{x}_{b}^{\prime}\right\rangle=\cos \beta\left|\beta_{x}\right\rangle-\sin \beta\left|\beta_{y}\right\rangle \\
\left|\hat{y}_{b}^{\prime}\right\rangle=\sin \beta\left|\beta_{x}\right\rangle+\cos \beta\left|\beta_{y}\right\rangle
\end{array}
$$

Hence we obtain

$$
\begin{aligned}
\left|\hat{x}_{a}^{\prime}\right\rangle\left|\hat{y}_{b}^{\prime}\right\rangle & =\left(\cos \alpha\left|\alpha_{x}\right\rangle-\sin \alpha\left|\alpha_{y}\right\rangle\right)\left(\sin \beta\left|\beta_{x}\right\rangle+\cos \beta\left|\beta_{y}\right\rangle\right) \\
\left|\hat{y}_{a}^{\prime}\right\rangle\left|\hat{x}_{b}^{\prime}\right\rangle & =\left(\sin \alpha\left|\alpha_{x}\right\rangle+\cos \alpha\left|\alpha_{y}\right\rangle\right)\left(\cos \beta\left|\beta_{x}\right\rangle-\sin \beta\left|\beta_{y}\right\rangle\right)
\end{aligned}
$$

The state of the entangled photon pair can be written as

$$
\begin{aligned}
& \frac{1}{\sqrt{2}}\left(\left|\hat{x}_{a}^{\prime}\right\rangle\left|\hat{y}_{b}^{\prime}\right\rangle+\left|\hat{y}_{a}^{\prime}\right\rangle\left|\hat{x}_{b}^{\prime}\right\rangle\right) \\
= & \frac{1}{\sqrt{2}}\left[(\cos \alpha \sin \beta+\sin \alpha \cos \beta)\left(\left|\alpha_{x}\right\rangle\left|\beta_{x}\right\rangle-\left|\alpha_{y}\right\rangle\left|\beta_{y}\right\rangle\right)\right. \\
+ & \left.(\cos \alpha \cos \beta-\sin \alpha \sin \beta)\left(\left|\alpha_{x}\right\rangle\left|\beta_{y}\right\rangle-\left|\alpha_{y}\right\rangle\left|\beta_{x}\right\rangle\right)\right] \\
= & \frac{1}{\sqrt{2}}\left[\sin (\alpha+\beta)\left(\left|\alpha_{x}\right\rangle\left|\beta_{x}\right\rangle-\left|\alpha_{y}\right\rangle\left|\beta_{y}\right\rangle\right)+\cos (\alpha+\beta)\left(\left|\alpha_{x}\right\rangle\left|\beta_{y}\right\rangle-\left|\alpha_{y}\right\rangle\left|\beta_{x}\right\rangle\right)\right]
\end{aligned}
$$

From the above equation, we obtain

$$
\begin{aligned}
& P(\alpha, \beta)=\frac{1}{2} \sin ^{2}(\alpha+\beta) \\
& P\left(\alpha_{\perp}, \beta_{\perp}\right)=\frac{1}{2} \sin ^{2}(\alpha+\beta), \\
& P\left(\alpha, \beta_{\perp}\right)=\frac{1}{2} \cos ^{2}(\alpha+\beta) \\
& P\left(\alpha_{\perp}, \beta\right)=\frac{1}{2} \cos ^{2}(\alpha+\beta) .
\end{aligned}
$$

C. 5 0.5pt

Ans: $S=\left|\cos 2(\alpha-\beta)-\cos 2\left(\alpha-\beta^{\prime}\right)\right|+\left|\cos 2\left(\alpha^{\prime}-\beta\right)+\cos 2\left(\alpha^{\prime}-\beta^{\prime}\right)\right|$
$S=2 \sqrt{2} . S>2$ indicates that it is not consistent with classical theories.

Solution:

One first realizes that $E(\alpha, \beta)=\frac{P(\alpha, \beta)+P\left(\alpha_{\perp}, \beta_{\perp}\right)-P\left(\alpha, \beta_{\perp}\right)-P\left(\alpha_{\perp}, \beta\right)}{P(\alpha, \beta)+P\left(\alpha_{\perp}, \beta_{\perp}\right)+P\left(\alpha, \beta_{\perp}\right)+P\left(\alpha_{\perp}, \beta\right)}$. Using expressions for P, we find

$$
\begin{aligned}
& E(\alpha, \beta)=\sin ^{2}(\alpha+\beta)-\cos ^{2}(\alpha+\beta) \\
= & (\sin \alpha \cos \beta+\cos \alpha \sin \beta)^{2}-(\cos \alpha \cos \beta-\sin \alpha \sin \beta)^{2} \\
= & -\left(\cos ^{2} \alpha-\sin ^{2} \alpha\right)\left(\cos ^{2} \beta-\sin ^{2} \beta\right)+4 \sin \alpha \sin \beta \cos \alpha \cos \beta \\
= & \sin (2 \alpha) \sin (2 \beta)-\cos (2 \alpha) \cos (2 \beta)=-\cos 2(\alpha-\beta) .
\end{aligned}
$$

Hence $S=\left|\cos 2(\alpha-\beta)-\cos 2\left(\alpha-\beta^{\prime}\right)\right|+\left|\cos 2\left(\alpha^{\prime}-\beta\right)+\cos 2\left(\alpha^{\prime}-\beta^{\prime}\right)\right|$. For $\alpha=\frac{\pi}{4}, \alpha^{\prime}=0$, $\beta=-\frac{\pi}{8}, \beta^{\prime}=\frac{\pi}{8}$, we find $S=\left|-\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}\right|+\left|\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}\right|=2 \sqrt{2}>2$. Hence classical theories do not apply.

